Math, asked by sarthak1585, 1 month ago

x-1/x=1/3 evaluate x³-1/x³

Answers

Answered by Raftar62
146

Step-by-step explanation:

Given, (x- 1/x) =1/3 .

So, (x- 1/x)³ = 1/27

=> (x³-1/x³ -3x²×1/x + 3x×1/x²) = 1/27

=> [x³ - 1/x³ -3(x-1/x)] = 1/27

=> [x³ - 1/x³ -3(1/3)] = 1/27

=> [x³- 1/x³ -1] = 1/27

=> x³ - 1/x³ = 1/27 +1

=> x³ - 1/x³ = 28/27

Answered by Niki09412
2135

 \huge {\boxed{ \red{Answer}}}

x -  \frac{1}{x}  =  \frac{1}{3}

( {x -  \frac{1}{x} })^{3}  = (  { \frac{1}{3} })^{3}

 {x}^{3}  -  \frac{1}{ {x}^{3} }  - 3(x -  \frac{1}{x} ) =  \frac{1}{27}

 {x}^{3}  -  \frac{1}{ {x}^{3} }  =  \frac{1}{27}  + 3( \frac{1}{3} )

 {x}^{3}  -  \frac{1}{ {x}^{3} }  =  \frac{1}{27} + 1

 {x}^{3}  -  \frac{1}{ {x}^{3} }  =  \frac{28}{27}

Similar questions