x+(1/x+1) =5 then find the value of 6x^4(x-5) +34
Answers
Answered by
1
Given: x+(1/x+1) =5
To find: the value of 6x^4(x-5) +34
Solution:
- Now we have given that x+(1/x+1) =5
- Solving this we get:
x(x+1) + 1 = 5(x+1)
x²+x+1 = 5x+5
x²-4x-4=0
- Solving the equation, we get:
{ -(-4) ± √(-4)² - 4(1)(-4) } / 2
- So, x = 2±2√2
- Putting both values in 6x^4(x-5) +34, we get:
6(2+2√2)^4 x (2+2√2-5) + 34
6(4+8+8√2)² x (2√2-3) + 34
6(12+8√2)² x (2√2-3) + 34
6x16(3+2√2)² x (2√2-3) + 34
6x16(9+8+12√2) x (2√2-3) + 34
96(17+12√2) x (2√2-3) + 34
(1632 + 1512√2) x (2√2-3) + 34
3264√2 - 4896 + 6048 - 4536√2 + 34
-1272√2 + 1152 + 34
1186-1272√2
Answer:
So the value of x is 2+2√2 and value of the expression is 1186-1272√2.
Similar questions
History,
4 months ago
Math,
4 months ago
Chemistry,
9 months ago
Environmental Sciences,
11 months ago