Math, asked by rishi316rk, 1 year ago

( x+1/x-1 - x-1/x+1 ) ÷ (x-1/x+1 + x+1/x-1) = 2x/x²+1 prove it​

Attachments:

Answers

Answered by Kkrishnanselvi
0

Answer:

here answer for your question

Attachments:
Answered by abhi569
17

Answer:

Simplified value of this equation is 2x / ( x^2 + 1 ).

Step-by-step explanation:

 \implies \bigg \{ \dfrac{x + 1}{x - 1} -  \dfrac{x - 1}{x + 1}  \bigg \} :    \bigg \{\dfrac{x -1}{x + 1}  +  \ \dfrac{x + 1}{x - 1}  \bigg \} \\  \\  \\  \implies \bigg \{ \dfrac{(x + 1) {}^{2}  - (x - 1) {}^{2}  }{(x  -  1)(x  +  1)}  \bigg \} :  \bigg \{ \dfrac{(x  -  1) {}^{2}   +  (x  + 1) {}^{2}  }{(x + 1)(x - 1)}  \bigg \}

Using :

  • ( a + b )^2 - ( a - b )^2 = a^2 + b^2 + 2ab - ( a^2 + b^2 - 2ab ) = 4ab
  • ( a - b )^2 + ( a + b )^2 = a^2 + b^2 - 2ab + a^2 + b^2 + 2ab = 2( a^2 + b^2 )
  • ( a + b )( a - b ) = a^2 - b^2

 \implies \bigg \{  \dfrac{4x}{x {}^{2}   -  1}  \bigg \} :  \bigg \{ \dfrac{2(x {}^{2}  +  1) {}^{} {}^{}  }{x {}^{2} - 1 }  \bigg \}  \\  \\  \\  \implies  \dfrac{4x}{2(x {}^{2} + 1) }  \\  \\  \\  \implies \dfrac{2x}{x {}^{2}  + 1}

Hence,proved.

Similar questions