Math, asked by simi26, 1 year ago

x+1/x-1+x-2/x+2=4-2x+3/x-2

Answers

Answered by mysticd
229

Answer:

x = \frac{6}{5}\:Or \:x = -5

Step-by-step explanation:

 Given \: \frac{x+1}{x-2}+\frac{x-2}{x+2}\\=4-\frac{2x+3}{x-2}

\implies \frac{x-2}{x+2}+\frac{2x+3}{x-2}\\=4-\frac{x+1}{x-1}

\implies \frac{(x-2)^{2}+(x+2)(2x+3)}{(x+2)(x-2)}\\=\frac{4(x-1)-(x+1)}{x-1}

\implies \frac{x^{2}-4x+4+2x^{2}+3x+4x+6}{x^{2}-2^{2}}\\=\frac{4x-4-x-1}{x-1}

\implies \frac{3x^{2}+3x+10}{x^{2}-4}\\=\frac{3x-5}{x-1}

\implies (x-1)(3x^{2}+3x+10)\\=(x^{2}-4)(3x-5)

\implies (3x^{3}+3x^{2}+10x-3x^{2}-3x-10)\\=(3x^{3}-5x^{2}-12x+20)

\implies (3x^{3}+7x-10)-(3x^{3}-5x^{2}-12x+20)=0

\implies (3x^{3}+7x-10-3x^{3}+5x^{2}+12x-20)=0

\implies 5x^{2}+19x-30=0

Compare above equation with

ax²+bx+c=0, we get

a = 5, b = 19, c = -30

Discreminant (D)=-4ac

= (19)²-4×19×(-30)

= 361+600

= 961

By Quadratic Formula:

x = [-b±√D]/(2a)

= \frac{-19±\sqrt{961}}{2\times 5}

=\frac{-19±31}{10}

Now,

x= \frac{-19+31}{10}

Or x =\frac{-19-31}{10}

x = \frac{12}{10}\: Or\: x =\frac{-50}{10}

x = \frac{6}{5}\: Or \:x =-5

•••♪

Answered by NirupamHanda
34

Answer:

Refer to Attachment

Step-by-step explanation:

Thank U

Attachments:
Similar questions