Math, asked by Anonymous, 10 months ago

x+1/x=10/3, find x^3+1/x^3

Answers

Answered by pansumantarkm
5

Step-by-step explanation:

Given:

x+\frac{1}{x}=\frac{10}{3} -----(i)

Required to Find:

x^{3}+\frac{1}{x^{3}}

Solution:

Take cube to both sides of the equation (i),

We get,

(x+\frac{1}{x})^{3}=(\frac{10}{3})^{3}\\\\=>(x)^{3}+(\frac{1}{x})^{3}+3*x*\frac{1}{x}(x+\frac{1}{x})=\frac{1000}{27}

[∵ (a + b)³= a³ + b³ + 3ab(a + b)]

=>x^{3}+\frac{1}{x^{3}}+3*\frac{10}{3}=\frac{1000}{27}\\\\=>x^{3}+\frac{1}{x^{3}}+10=\frac{1000}{27}\\\\=>x^{3}+\frac{1}{x^{3}}=\frac{1000}{27}-10\\\\=>x^{3}+\frac{1}{x^{3}}=\frac{1000-270}{27}\\\\=>x^{3}+\frac{1}{x^{3}}=\frac{730}{27}\\\\=>x^{3}+\frac{1}{x^{3}}=27\frac{1}{27}\\

_____________________________________

//Hope This will Helped You//

//Please Mark it as Brainliest//

#BAL  #ANSWERWITHQUALITY

Similar questions