Physics, asked by pintusen0676, 9 months ago

(x+1) (x^2+2x-3) Find the differentiation.

Answers

Answered by saisripurna89
2

Answer:

Explanation:

we can use this formula

d/dx(uv) = u' v + v' u

Let us consider

u = x+1

v = x^2 + 2x + 3

Please find the attached file

If you want you can reduce it further

I hope this will help you

Attachments:
Answered by Anonymous
175

Answer -

Formula used -

 \frac{d}{dx} (uv) =  u\frac{dv}{dx}  + v \frac{du}{dx}

━━━━━━━━━━━━━━━━━━━━━━━━━━

\longrightarrowu = x + 1

\longrightarrowv =  {x}^{2}  + 2x - 3

━━━━━━━━━━━━━━━━━━━━━━━━━━

\implies(x + 1)\times\frac{d}{dx} ({x^{2}+2x-3}) +( {x}^{2}  + 2x - 3)\times\frac{d}{dx}(x + 1)

━━━━━━━━━━━━━━━━━━━━━━━━━━

\longrightarrow \frac{d}{dx} ({x}^{2}  + 2x - 3)  = 2x + 2

\longrightarrow\frac{d}{dx}(x + 1) = 1

━━━━━━━━━━━━━━━━━━━━━━━━━━

\longrightarrow \frac{d}{dx} (uv) = (x + 1)(2x + 2)+({x}^{2}+2x-3) (1)

\longrightarrow 2{x}^{2}  + 2x + 2x + 2 +  {x}^{2}  + 2x - 3

\longrightarrow  3 {x}^{2}  + 6x - 1

━━━━━━━━━━━━━━━━━━━━━━━━━━

ADDITIONAL INFORMATION -

Sum rule \longrightarrow

 \frac{d}{dx} (u + v) =  \frac{du}{dx}  +  \frac{dv}{dx}

━━━━━━━━━━

Difference rule \longrightarrow

 \frac{d}{dx} (u - v) =  \frac{du}{dx}  - \frac{dv}{dx}

━━━━━━━━━━

Quotient rule \longrightarrow

 \frac{d}{dx} ( \frac{u}{v} ) =   \frac{v\frac{du}{dx}  -  u\frac{dv}{dx} }{ {v}^{2} }

━━━━━━━━━━

Chain rule \longrightarrow

y = f(u) and u = f(x)

 \frac{dy}{dx}  =  \frac{dy}{du}  \times  \frac{du}{dx}

━━━━━━━━━━━━━━━━━━━━━━━━━━

Thanks

Similar questions