Math, asked by binduvsb, 6 months ago


(x - 1)(x + 2)(2x - 7) {}^{2} < = 0

Answers

Answered by Vaanyapopli
0

Answer:

Problem:

BC

\sf \cos48 \degree 30' = \dfrac{BC}{5}cos48°30

=

5

BC

N.B :-

cos 48° = 0.6691

But we have cos 48°30'

30' = 0.5°

Now 48° + 0.5° = 48.5°

∴ cos 48.5° = 0.6626

Let's continue......

\sf0.6626 = \dfrac{BC}{5}0.6626=

5

BC

\sf{0.6626 \times 5 = BC}0.6626×5=BC

★ \sf{BC = 3.313 \: cm}BC=3.313cm

Now let's find out area

\underline{ \boxed{ \sf{Area \: of \: right \: triangle = \frac{1}{2} \times b \times h}}}

Areaofrighttriangle=

2

1

×b×h

\sf{= \dfrac{1}{2} \times BC \timesA

\sf = \dfrac{1}{2} \times 3.313 \times 3.7450=

2

1

×3.313×3.7450

\sf = 1.6565 \times 3.7450=1.6565×3.7450=1.6565×3.7450=1.6565×3.7450

\sf = 6.2035925 \: {cm}^{2}=6.2035925cm

2

∴ Area of the right angled triangle \green{ \underline{ \boxed{ \sf{ \gray{ \approx 6.204 \: {cm}^{2} }}}}}

≈6.204cm

2

━━━━━━━━━━━━━━━━━━━━━━━━━━

\purple{\large{\underline{\underline{ \rm{Problem: }}}}}

Problem:

From the given figure, prove that θ + Φ = 90°. Prove also that there are two other right-angles in the figure. Find: (i) sin α (ii) cos β (iii) tan Φ.

\purple{\large{\underline{\underline{ \rm{Solution: }}}}

In ∆ ACD, we have:

\sf\cos\theta = \dfrac{CD}{AC} = \dfrac{12}{15}cosθ=

AC

CD

=

15

12

\sf \sin \theta = \dfrac{AD}{AC} = \dfrac{9}{12}sinθ=

AC

AD

=

12

9

In ∆ BCD, we have:

\sf\cos \phi = \dfrac{CD}{BC} = \dfrac{12}{20}cosϕ=

BC

CD

=

20

12

\sf\sin \phi = \dfrac{BD}{BC} = \dfrac{16}{20}sinϕ=

BC

BD

=

20

16

We know,

cos ( A + B ) = cosA cosB - sinA sinB

∴ cos (θ + Φ) = cos θ cos Φ - sin θ sin Φ

\sf = \dfrac{12}{15} \times \dfrac{12}{20} - \dfrac{9}{15} \times \dfrac{16}{20}=

15

12

×

20

12

15

9

×

20

16

\sf = \dfrac{144}{300} - \dfrac{144}{300}=

300

144

300

144

\sf \therefore \cos(\theta + \phi )∴cos(θ+ϕ)

We know cos 90° = 0

\sf \cos( \theta + \phi) = \cos90 \degreecos(θ+ϕ)cos(θ+ϕ)=cos90\degreecos(θ+ϕ)

\sf{ \theta + \phi = 90 \degree}θ+ϕ=90°

Hence Proved!!

In right-angled triangle ACD, By using Pythagoras theorem

\sf{ {AC}^{2} = {AD}^{2} + {DC}^{2} }AC

2

=AD

2

+DC

2

\sf{15}^{2} = {12}^{2} + {9}^{2}15

2

=12

2

+9

2

\sf225 = 144 + 81225=144+81

\sf{255 = 255}255=255

∴ ∆ ACD is a right-angled triangle.

Similarly, ∆ BCD is also a right-angled triangle.

NOW,

▩ \sf\sin\alpha =\dfrac{perpendicular}{hypotenuse}sinα=

hypotenuse

perpendicular

\sf \sin\alpha = \dfrac{CD}{AC}sinα=

AC

CD

\sf \sin\alpha = \dfrac{12}{15} = \dfrac{4}{5}sinα=

15

12

=

5

4

▩ \sf \cos\beta = \dfrac{base}{hypotenuse}cosβ=

hypotenuse

base

\sf \cos\beta = \dfrac{BD}{BC}cosβ=

BC

BD

\sf\cos\beta = \dfrac{16}{20} = \dfrac{4}{5}cosβ=

20

16

=

5

4

▩ \sf \tan \phi = \dfrac{perpendicular}{base}tanϕ=

base

perpendicular

\sf\tan \phi = \dfrac{BD}{DC}tanϕ=

DC

BD

\sf\tan\phi = \dfrac{16}{12} = \dfrac{4}{3}tanϕ=

12

16

=

3

4

━━━━━━━━━━━━━━━━━━━

Similar questions