Math, asked by rushilshah999, 1 year ago

(x+1/x)^2-3/2(x-1/x)=4​

Answers

Answered by praneethks
1

Step-by-step explanation:

(x +  \frac{1}{x} )^{2}  -  \frac{3}{2}(x -  \frac{1}{x}) = 4 =  >  {x}^{2}  +  \frac{1}{ {x}^{2}  }

 + 2.x. \frac{1}{x}  -  \frac{3}{2} (x -  \frac{1}{x}) - 4 = 0 =  >

 {x}^{2}  +  \frac{1}{ {x}^{2}} - 2 -  \frac{3}{2}  (x -  \frac{1}{x} ) = 0 =  >

 {(x -  \frac{1}{x}) }^{2}  -  \frac{3}{2}( x -  \frac{1}{x}) = 0 =  >

Let x -1/x be y Then

 {y}^{2}  -  \frac{3}{2} y = 0 =  > y(y -  \frac{3}{2}) = 0 =  >

y = 0 \: or \:  \frac{3}{2}

if \: y = 0 =  > x -  \frac{1}{x} = 0 =  >  {x}^{2}   - 1 =

0 =  > (x - 1)(x + 1) = 0 =  >

x = 1 \: or \:  - 1

if \: y =  \frac{3}{2}  =  > x - \frac{1}{x} =  \frac{3}{2}    =  >  {x}^{2}  -  \frac{3}{2}x

 + 1 = 0 =  >   {x}^{2}  - 2x +  \frac{x}{2} - 1 = 0 =  >

x(x - 2)  + \frac{1}{2} (x - 2) = 0 =  >

(x +  \frac{1}{2})(x - 2) = 0 =  > x = 2\: or \:  -  \frac{1}{2}

So the solutions of x which satisfy the above equation are 1,-1,2,-1/2. Hope it helps you.

Similar questions