Math, asked by Fahamida, 1 year ago

(x+1) (x+2) (3x-1) (3x-4)+12

Answers

Answered by pritdz
18

 =  ({x  }^{2}  + 3x + 2)(9 {x}^{2}  - 15x + 4) + 12 \\ =  ( {x}^{2}  + 3x  + 2) (1)(9 - 5 + 2) + 12 \\   =  ({x}^{2}  + 3x + 2)(6) + 12 \\  = 6 {x}^{2}  + 18x + 24
Answered by ashishks1912
2

GIVEN :

The expression is (x+1) (x+2) (3x-1) (3x-4)+12

TO FIND :

The product of the given expression.

SOLUTION :

(x+1) (x+2) (3x-1) (3x-4)+12=[(x+1) (x+2)][ (3x-1) (3x-4)]+12

By using the Distributive Property :

(a+b)(x+y)=a(x+y)+b(x+y)

=[x (x+2)+1(x+2)][ 3x(3x-4)-1(3x-4)]+12

=[x(x)+x(2)+1(x)+1(2)][3x(3x)+3x(-4)-1(3x)-1(-4)]+12

By using the identity :

a^m.a^n=a^{m+n}

=[x^{1+1}+x+2][9x^{1+1}-12x-3x+4]+12

=[x^2+x+2][9x^2-12x-3x+4]+12

Adding the like terms

=[x^2+x+2][9x^2-15x+4]+12

By using the Distributive Property :

(a+b+c)(x+y+z)=a(x+y+z)+b(x+y+z)+c(x+y+z)

=(x^2)(9x^2-15x+4)+x[9x^2-15x+4)+2(9x^2-15x+4)+12

=x^2(9x^2)+x^2(-15x)+x^2(4)+x(9x^2)+x(-15x)+x(4)+2(9x^2)+2(-15x)+2(4)+12

By using the identity :

a^m.a^n=a^{m+n}

=9x^{2+2}-15x^{2+1}+4x^2+9x^{1+2}-15x^{1+1}+4x+18x^2-30x+8+12

=9x^4-15x^3+4x^2+9x^3-15x^2+4x+18x^2-30x+8+12

By adding the like terms

=9x^4+12x^3-23x^2-18x+20

(x+1) (x+2) (3x-1) (3x-4)+12=9x^4+12x^3-23x^2-18x+20

Therefore the product of the given expression (x+1) (x+2) (3x-1) (3x-4)+12 is 9x^4+12x^3-23x^2-18x+20

Similar questions