Math, asked by arshadislam353, 10 months ago

(x+1/x)^2=96.whats the value of x^2+1/x^2​

Answers

Answered by EliteSoul
1

Answer:

plz follow me❤

Step-by-step explanation:

(x +  \frac{1}{x}) {}^{2} = 96 \\ so \:  \:  \:( x +  \frac{1}{x}) = 4 \sqrt{6}  \\

x {}^{2} +  \frac{1}{x {}^{2} }  =  (x +  \frac{1}{x}) {}^{2} - 2 \times x \times  \frac{1}{x} \\  = (4 \sqrt{6}) {}^{2} - 2 \\  = 16 \times 6 - 2 \\  = 96 - 2 \\  = 94

Answered by SerenaBochenek
0

The correct answer is "94". Further explanation is given below.

Step-by-step explanation:

If, given:

(x+\frac{1}{x})^2 = 96

then,

(x+\frac{1}{x}) = \sqrt[4]{6}

As we know,

(x+\frac{1}{x})^2=x^2+\frac{1}{x^2}+2*x*\frac{1}{x}

∵ (a+b)² = a²+b²+2ab

Now,

x^2+\frac{1}{x^2} = (x+\frac{1}{x})^2-2\\

On putting the values in the above equation, we get

⇒  (\sqrt[4]{6})^2-2

⇒  16×6-2

⇒  96-2

⇒  94

Hence the value of  x^2+\frac{1}{x^2} = 94.

Learn more:

https://brainly.in/question/11091103

Similar questions