Math, asked by rickron79, 1 year ago

x+1/x=2,then find x100-1/x100

Answers

Answered by mantu9000
3

We have:

x+\dfrac{1}{x} = 2

If x+\dfrac{1}{x} = 2, then find the value of x^{100} -\dfrac{1}{x^{100}} is:

Solution"

x+\dfrac{1}{x} = 2

Put x = 1, we get

1+\dfrac{1}{1} = 2

⇒ 1 + 1 = 2

⇒ 2 = 2,x = 1 is satisfied.

x^{100} -\dfrac{1}{x^{100}}

Put x = 1 , we get

1^{100} -\dfrac{1}{1^{100}}

= 1-\dfrac{1}{1}

= 1 - 1

= 0

x^{100} -\dfrac{1}{x^{100}} = 0

Thus, If x+\dfrac{1}{x} = 2, then find the value of x^{100} -\dfrac{1}{x^{100}} is equal to zero(0).

Answered by pulakmath007
3

SOLUTION

GIVEN

 \displaystyle \sf{x +  \frac{1}{x}  = 2}

TO DETERMINE

 \displaystyle \sf{ {x}^{100}  -  \frac{1}{ {x}^{100} } }

EVALUATION

Here the it is given that

 \displaystyle \sf{x +  \frac{1}{x}  = 2}

 \displaystyle \sf{ \implies \:\frac{ {x}^{2}  + 1}{x}  = 2}

 \displaystyle \sf{ \implies \: {x}^{2}  + 1 = 2x}

 \displaystyle \sf{ \implies \: {x}^{2}   - 2x+ 1 = 0}

 \displaystyle \sf{ \implies \: {(x - 1)}^{2}   = 0}

 \displaystyle \sf{ \implies \: x = 1}

Now

 \displaystyle \sf{ {x}^{100}  -  \frac{1}{ {x}^{100} } }

 \displaystyle \sf{  = {(1)}^{100}  -  \frac{1}{ {(1)}^{100} } }

 = 1 - 1

 = 0

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. If x+1/x=3 then, x^7+1/x^7=

https://brainly.in/question/23295932

2. if 3√x+(3√3375) ^3 =17 , then find the cube root of x-1026 is equal to

https://brainly.in/question/28465037

Similar questions