Math, asked by masterrishabh437, 10 months ago

x + 1/x= 2, then show that :x^2+1/x^2=x^3+1/x^3=x^4+1/x^4​

Answers

Answered by Abhishek474241
10

AnSwEr

{\tt{\red{\underline{\large{Given}}}}}

\tt{X+\dfrac{1}{X}}=2

{\sf{\green{\underline{\large{To\:find}}}}}

  • \tt{X^3+\dfrac{1}{X^3}}

{\sf{\pink{\underline{\Large{Explanation}}}}}

We know that

\boxed{\boxed{\sf\red{(a+b)^2=a^2+b^2+2ab}}}

Therefore

\tt{(X+\dfrac{1}{X})^2=X^2+\dfrac{1}{X^2}+2\frac{1}{X}\times{X}}

Solving

\tt{X+\dfrac{1}{X}}=2

Both side squaring

\tt{(X+\dfrac{1}{X})^2}=(2)²

\implies\tt{(X+\dfrac{1}{X})^2=X^2+\dfrac{1}{X^2}+2\frac{1}{X}\times{X}}=4

\implies\tt{4=X^2+\dfrac{1}{X^2}+2\frac{1}{X}\times{X}}

\implies\tt{4=X^2+\dfrac{1}{X^2}+2}

\implies\tt{4-2=X^2+\dfrac{1}{X^2}}

\implies\tt{2=X^2+\dfrac{1}{X^2}}

Now

\tt{X^3+\dfrac{1}{X^3}}

Formula used

\implies\tt{X^3+\dfrac{1}{X^3)}=(X+\dfrac{1}{x})(X^2+\dfrac{1}{X^2}-\frac{1}{X}\times{X)}}

utting value

\implies\tt{X^3+\dfrac{1}{X^3}={2}(2-1)}

\implies\tt{X^3+\dfrac{1}{X^3}={2}(1)}

\implies\tt{X^3+\dfrac{1}{X^3}=2}

Simlilary

x^4+1/x^4 =2

Answered by RvChaudharY50
20

Gɪᴠᴇɴ :-

  • (x + 1/x) = 2

Tᴏ SHOW :-

  • (x² + 1/x²) = (x³ + 1/x³) = (x⁴ + 1/x⁴)

Fᴏʀᴍᴜʟᴀ ᴜsᴇᴅ :-

  • (a + b)² = a² + b² + 2ab
  • (a + b)³ = a³ + b³ + 3ab(a + b)

Sᴏʟᴜᴛɪᴏɴ :-

→ (x + 1/x) = 2

Squaring Both sides ,

→ (x + 1/x)² = 2²

using (a + b)² = a² + b² + 2ab in LHS , we get,

→ x² + 1/x² + 2 * x * (1/x) = 4

→ (x² + 1/x²) + 2 = 4

→ (x² + 1/x²) = 4 - 2

(x² + 1/x²) = 2 ---------- Equation

_________________________

Now,

Squaring Both sides of Equation Again we get,

(x² + 1/x²)² = 2²

Again using (a + b)² = a² + b² + 2ab in LHS , we get,

→ x⁴ + 1/x⁴ + 2 * x² * (1/x²) = 4

→ (x⁴ + 1/x⁴) + 2 = 4

→ (x⁴ + 1/x⁴) = 4 - 2

(x⁴ + 1/x⁴) = 2 ---------- Equation

_________________________

Now,

(x + 1/x) = 2 (GIVEN).

Cubing Both sides we get,

→ (x + 1/x)³ = 2³

using (a + b)³ = a³ + b³ + 3ab(a + b) in LHS , we get,

→ x³ + 1/x³ + 3 * x * (1/x) * (x + 1/x) = 8

→ (x³ + 1/x³) + 3(x + 1/x) = 8

Putting (x + 1/x) = 2 Now,

→ (x³ + 1/x³) + 3 * 2 = 8

→ (x³ + 1/x³) = 8 - 6

(x³ + 1/x³) = 2 . -------------- Equation

________________________

From Equation , & we can conclude That :-

(x² + 1/x²) = (x³ + 1/x³) = (x⁴ + 1/x⁴) (Proved).

Similar questions