x + 1/x= 2, then show that :x^2+1/x^2=x^3+1/x^3=x^4+1/x^4
Answers
✪AnSwEr
=2
We know that
Therefore
Solving
=2
Both side squaring
=(2)²
Now
Formula used
¶utting value
Simlilary
x^4+1/x^4 =2
Gɪᴠᴇɴ :-
- (x + 1/x) = 2
Tᴏ SHOW :-
- (x² + 1/x²) = (x³ + 1/x³) = (x⁴ + 1/x⁴)
Fᴏʀᴍᴜʟᴀ ᴜsᴇᴅ :-
- (a + b)² = a² + b² + 2ab
- (a + b)³ = a³ + b³ + 3ab(a + b)
Sᴏʟᴜᴛɪᴏɴ :-
→ (x + 1/x) = 2
Squaring Both sides ,
→ (x + 1/x)² = 2²
using (a + b)² = a² + b² + 2ab in LHS , we get,
→ x² + 1/x² + 2 * x * (1/x) = 4
→ (x² + 1/x²) + 2 = 4
→ (x² + 1/x²) = 4 - 2
→ (x² + 1/x²) = 2 ---------- Equation ❶
_________________________
Now,
Squaring Both sides of Equation ❶ Again we get,
→ (x² + 1/x²)² = 2²
Again using (a + b)² = a² + b² + 2ab in LHS , we get,
→ x⁴ + 1/x⁴ + 2 * x² * (1/x²) = 4
→ (x⁴ + 1/x⁴) + 2 = 4
→ (x⁴ + 1/x⁴) = 4 - 2
→ (x⁴ + 1/x⁴) = 2 ---------- Equation ❷
_________________________
Now,
→ (x + 1/x) = 2 (GIVEN).
Cubing Both sides we get,
→ (x + 1/x)³ = 2³
using (a + b)³ = a³ + b³ + 3ab(a + b) in LHS , we get,
→ x³ + 1/x³ + 3 * x * (1/x) * (x + 1/x) = 8
→ (x³ + 1/x³) + 3(x + 1/x) = 8
Putting (x + 1/x) = 2 Now,
→ (x³ + 1/x³) + 3 * 2 = 8
→ (x³ + 1/x³) = 8 - 6
→ (x³ + 1/x³) = 2 . -------------- Equation ❸
________________________
From Equation ❶ , ❷ & ❸ we can conclude That :-