Math, asked by spandanavr428, 4 months ago

x+1/x=2 then show that!
X²+1x^2 = X^3+1/X3 = x^4+1x^4​

Answers

Answered by AstroPaleontologist
2

x +  \frac{1}{ {x} }  = 2

to show :

 {x}^{2}   +  \dfrac{1}{ {x}^{2} }  =  {x}^{3}  +  \dfrac{1}{ {x}^{3} }  =  {x}^{4}   +  \dfrac{1}{ {x}^{4} }

-----------------------------------------------------------------------------------------------------

Identity to use :

(a+b)² = a² + 2ab + b²

and (a+b)³ = a³ + b³ + 3ab(a+b)

________________________________________________________________

(x +  \frac{1}{x}) ^{2}  =  {x}^{2}  + 2(x)( \frac{1}{x}) +  \frac{1}{ {x}^{2} }

x and 1/x gets cancelled

{2}^{2}  =  {x}^{2}  + 2 +  \frac{1}{ {x}^{2} }

4 =  {x}^{2}  + 2 +  \frac{1}{ {x}^{2} }

by transposing 2 to the LHS(Left Hand Side)

4 - 2 =  {x}^{2}  +  \frac{1}{ {x}^{2} }

2 =  {x}^{2}  +  \frac{1}{ {x}^{2} }

again using the identity

( {x}^{2}  +  \frac{1}{ {x}^{2} })^{2} = ( {x}^{2} )^{2}  + 2( {x}^{2})( \frac{1}{ {x}^{2} }) +  \frac{1}{( {x}^{2})^{2}  }

 {2}^{2}  =  {x}^{4}  + 2 +  \frac{1}{ {x}^{4} }

4 =  {x}^{4}  + 2 +  \frac{1}{ {x}^{4} }

4 - 2 =  {x}^{4}  +  \frac{1}{ {x}^{4} }

___________________________________________________________

Using (a+b)³ = a³ + 3ab(a+b) + b³

(x +  \frac{1}{x})^{3}  =  {x}^{3}  + 3(x)( \frac{1}{x})(x +  \frac{1}{x}) +  \frac{1}{ {x}^{3} }

 {2}^{3}  =  {x}^{3}  + 3(2) +  \frac{1}{ {x}^{3} }

8 =  {x}^{3}  + 6 +  \frac{1}{ {x}^{3} }

8 - 6 =  {x}^{3}  +  \frac{1}{ {x}^{3} }

2 =  {x}^{3}  +  \frac{1}{ {x}^{3} }

__________________________________________________________

Therefore Verified.

Hope it helps!

have a great day!

Similar questions