(x+1/x)^2-(x-1/x)^2=?
Answers
Answered by
0
{(x + \{1}{x}) }^{2} + {(x - \{1}{x}) }^{2} \\ = {x}^{2} + { (\{1}{x} )}^{2} + 2 \x \\{1}{x} + {x}^{2} + { (\{1}{x}) }^{2} - 2 x \{1}{x} \\ = 2 {x}^{2} + \{2}{ {x}^{2} } \\ = \{2 {x}^{4} + 2 }{ {x}^{2} }
(x+
x
1
)
2
+(x−
x
1
)
2
=x
2
+(
x
1
)
2
+2×x×
x
1
+x
2
+(
x
1
)
2
−2×x×
x
1
=2x
2
+
x
2
2
=
x
2
2x
4
+2
Answered by
0
Answer:
4
Step-by-step explanation:
=(x+1/x)^2-(x-1/x)^2
= x^2+(1/x)^2+2×x×1/x-x^2-(1/x)^2+2×x×1/x
=2+2
=4 is ans
Similar questions
English,
16 hours ago
Science,
16 hours ago
Computer Science,
1 day ago
Social Sciences,
8 months ago
History,
8 months ago
Science,
8 months ago