Math, asked by ixitshiva871, 9 months ago

x-1/x+2+x-3/x=29/20 solve for x

Answers

Answered by hritiksingh1
17

Answer:

 \frac{x - 1}{x + 2}  +  \frac{x - 3}{x}  =  \frac{29}{20}

 \frac{x(x - 1) + (x + 2)(x - 3)}{x(x + 2)}  =  \frac{29}{20}

 \frac{ {x}^{2}  - x +  {x}^{2} - 3x + 2x - 6 }{ {x}^{2}  + 2x}  =  \frac{29}{20}

 \frac{ {2x}^{2} - 2x - 6 }{ {x}^{2} + 2x }  =  \frac{29}{20}

20( {2x}^{2}  - 2x - 6) = 29( {x}^{2}  + 2x)

 {40x}^{2}  - 40x - 120 =  {29x}^{2}  + 58x

 {11x}^{2}  - 98x - 120

 {11x}^{2}  - 110x + 12x - 120

11x(x - 10) + 12(x - 10)

(11x + 12)(x - 10)

here is your answer

hope is helps you..!!!

Answered by InfiniteSoul
3

{\underline{\boxed{\tt{\green{\dfrac{x-1}{x + 2} + \dfrac{x-3}{x} = \dfrac{29}{20} }}}}}

\sf\implies \dfrac{x-1}{x + 2} + \dfrac{x-3}{x} = \dfrac{29}{20}

\sf\implies\dfrac{ x ( x - 1) + ( x +2) ( x - 3)}{ x ( x +2} = \dfrac{29}{20}

\sf\implies\dfrac{x^2 - x + x^2 - 3x + 2x - 6}{x^2 + 2x } = \dfrac{29}{20}

\sf\implies \dfrac{2x^2 -2x - 6 }{x^2 + 2x} = \dfrac{29}{20}

\sf\implies 20 ( 2x^2 - 2x - 6 ) = 29 ( x^2 + 2x)

\sf\implies 40x^2 - 40x - 120 = 29x^2 + 58x

\sf\implies 40x^2- 29x^2 - 40x  - 58x - 120 = 0

\sf\implies 11x^2 - 90x - 120 = 0

  • middle term split

\sf\implies11x^2 - 110x + 12x - 120 = 0

\sf\implies 11x ( x - 10 ) + 12 ( x - 10) = 0

\sf\implies ( 11x + 12 ) ( x - 10)

\begin{tabular}{|c|c|}\cline{1-2}\sf 11x + 12 = 0  &\sf x - 10 = 0\\\cline{1-2}\sf 11x = -12&\sf x = 10\\\cline{1-2}\sf x = -12\div 11 &\sf x = 10\\\cline{1-2}\end{tabular}

  • since x cannot be negetive

Therefore

{\underline{\boxed{\tt{\green{ x = 10}}}}}

Similar questions