Math, asked by DevenYadav565, 5 months ago

(x-1)(x-2)(x-3)(x-4)=12
solve correctly​

Answers

Answered by aryan073
0

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

\diamondsuit\huge\underline{\displaystyle\sf\color{green} \: Answer}

 \:  \\  \implies \displaystyle \tt{(x - 1)(x - 2)(x - 3)(x - 4) = 12 \:  \: ...given \: equation}

 \:   \\ \implies \displaystyle  \tt{x(x - 2) - 1(x - 2)(x - 3)(x - 4) = 12}

 \:  \\  \implies \displaystyle \tt{( {x}^{2}  - 2x - x  + 2)(x - 3)(x - 4) = 12}

 \:   \\ \implies \displaystyle \tt{( {x}^{2}  - 3x - 2)(x - 3)(x - 4) = 12}

 \: \\   \implies \displaystyle \tt{x( {x}^{2}  - 3x  + 2) - 3( {x}^{2}  - 3x + 2)(x - 4) = 12}

 \:  \\  \implies \displaystyle \tt{ {x}^{3}  -  {3x}^{2}  + 2x -  {3x}^{2}  + 9x - 6)(x - 4) = 12}

 \:  \\  \implies \displaystyle \tt{ ({x}^{3}  - 6 {x}^{2}  + 11x - 6)(x - 4) = 12}

 \: \\   \implies \displaystyle \tt{ {x}^{3} (x - 4) - 6 {x}^{2} (x - 4) + 11x(x - 4) - 6(x - 4) = 12}

 \:  \:   \\ \implies \displaystyle \tt{ {x}^{4}  -  {4x}^{3}  -  {6x}^{3}  + 24 {x}^{2}  + 11 {x}^{2}  - 44x - 6x + 24 = 12}

 \:  \\  \implies \displaystyle \tt{ {x}^{4}  - 10 {x}^{3}  + 35 {x}^{2}  - 50x + 24 = 12}

 \:  \\  \implies \displaystyle \tt{ {x}^{4}  -  {10x}^{3}  + 35 {x}^{2}  - 50x + 24 - 12 = 0}

 \:  \\  \implies \displaystyle \tt{ {x}^{4}  -  {10x}^{3}  + 35 {x}^{2}  - 50x + 12 = 0}

 \:  \divideontimes  \boxed {\displaystyle \bf{ {x}^{4}  - 10 {x}^{3}  + 35 {x}^{2}  - 50x + 12 = 0 \: is \: the \: answer}}

Similar questions