(x+1) (x+2) (x+3) (x+4) = 120
Answers
Answered by
1
Answer:
x=1
(1+1) (1+2) (1+3) (1+4)=120
2×3×4×5=120
6×4×5=120
24×5=120
120=120
Answered by
1
(x+1)(x+2)(x+3)(x+4)=120
[x(x+2)+1(x+2)][x(x+4)+3(x+4)]=120
(x^2+2x+x+2)(x^2+4x+3x+12)=120
(x^2+3x+2)(x^2+7x+12)=120
x^2(x^2+7x+12)+3x(x^2+7x+12)+2(x^2+7x+12)=120
x^4+7x^3+12x^2+3x^3+21x^2+36x+2x^2+14x+24=120
x^4+10x^3+35x^2+50x+24=120
x^4+10x^3+35x^2+50x=96
The Solution to this equation can not be determined
[x(x+2)+1(x+2)][x(x+4)+3(x+4)]=120
(x^2+2x+x+2)(x^2+4x+3x+12)=120
(x^2+3x+2)(x^2+7x+12)=120
x^2(x^2+7x+12)+3x(x^2+7x+12)+2(x^2+7x+12)=120
x^4+7x^3+12x^2+3x^3+21x^2+36x+2x^2+14x+24=120
x^4+10x^3+35x^2+50x+24=120
x^4+10x^3+35x^2+50x=96
The Solution to this equation can not be determined
Similar questions