Math, asked by shivu9257, 1 year ago

x-1/x-2+x-3/x-4=3×1/3​

Answers

Answered by LovelyG
8

Answer:

\large{\underline{\boxed{\bf x = 2 +  \sqrt{2}  \:  \: or \:  \: x = 2 -  \sqrt{2}}}}

Step-by-step explanation:

Given that-

\sf  \frac{x - 1}{x - 2}  +  \frac{x - 3}{x - 4}  = 3 \times  \frac{1}{3}  \\  \\ \small \implies \sf  \frac{(x - 1)(x - 4) + (x - 3)(x - 2)}{(x - 2)(x - 4)}  = 1 \\  \\ \implies \sf  \frac{(x {}^{2}  - 4x - x + 4) + (x {}^{2}  - 3x - 2x + 6)}{x {}^{2}  - 4x - 2x + 8}  = 1 \\  \\ \implies \sf  \frac{x {}^{2}  - 5x + 4 + x {}^{2} - 5x + 6 }{x {}^{2} - 6x + 8 }  = 1 \\  \\ \implies \sf 2x {}^{2}  - 10x + 10 = x {}^{2}  - 6x + 8 \\  \\ \implies \sf 2x {}^{2}  - 10x + 10 - x {}^{2}  + 6x - 8 = 0 \\  \\ \implies \sf x {}^{2}  - 4x  +  2 =0

Now, we got a quadratic equation,

x² - 4x + 2 = 0, here

  • a = 1
  • b = (-4)
  • c = 2

Discriminant = b² - 4ac

⇒ D = (-4)² - 4 * 1 * 2

⇒ D = 16 - 8

⇒ D = 8

\implies \tt x =  \frac{ - b \pm  \sqrt{D} }{2a}  \\  \\ \implies \tt x = \frac{ - ( - 4) \pm  \sqrt{8} }{2 \times 1}  \\  \\ \implies \tt x = \frac{4 \pm 2 \sqrt{2} }{2}  \\  \\ \implies \tt x = \frac{2(2  \pm  \sqrt{2} )}{2}  \\  \\ \implies \tt x =2 \pm  \sqrt{2}

Therefore,

 \boxed{ \bf x = 2 +  \sqrt{2}  \:  \: or \:  \: x = 2 -  \sqrt{2} }

Similar questions