Math, asked by FFking, 11 months ago

x-1/x =3+2 root 2, find x cube- 1/x cube​

Answers

Answered by Anonymous
30

\mathfrak{\large{\underline{\underline{Answer:-}}}}

\boxed{\sf{{x}^{3}  -   \dfrac{1}{ {x}^{3} } =76 \sqrt{2} +108}}

\mathfrak{\large{\underline{\underline{Explanation:-}}}}

Given :- \sf{x - \dfrac{1}{x} = 3 + 2 \sqrt{2} }

To find : \sf{x^3 - \dfrac{1}{x^3} }

Solution :-

x - \dfrac{1}{x} = 3 + 2 \sqrt{2}

By cubing on both sides

 {(x -  \dfrac{1}{x})}^{3} =  {(3 + 2 \sqrt{2})}^{3}

In LHS - We know that (x - y)³ = x³ - y³ - 3xy(x - y)

Here x = x, y = 1/x

By substituting the values in the identity we have,

 {x}^{3} -  \dfrac{1}{ {x}^{3} } - 3(x)( \dfrac{1}{x} )(x -  \dfrac{1}{x}) =  {(3 + 2 \sqrt{2})}^{3}

 {x}^{3}  -   \dfrac{1}{ {x}^{3} } -3(x -  \dfrac{1}{x}) =  {(3 + 2 \sqrt{2})}^{3}

 {x}^{3} -  \dfrac{1}{ {x}^{3} } - 3(3 + 2 \sqrt{2}) =  {(3 + 2 \sqrt{2})}^{3}

[Since \bf{x - \dfrac{1}{x} = 3 + 2 \sqrt{2} } ]

 {x}^{3}  -   \dfrac{1}{ {x}^{3} } - 9 - 6 \sqrt{2} = {(3 + 2 \sqrt{2}) }^{3}

In RHS - We know that (x + y)³ = x³ + y³ + 3xy(x + y)

Here x = 3, y = 2√2

By substituting the values in the identity we have,

 {x}^{3}  -   \dfrac{1}{ {x}^{3} } - 9 - 6 \sqrt{2} =  {3}^{3} + {(2 \sqrt{2})}^{3} + 3(3)(2 \sqrt{2})(3 + 2 \sqrt{2})

 {x}^{3}  -   \dfrac{1}{ {x}^{3} } - 9 - 6 \sqrt{2} =27 +8(2 \sqrt{2})  + 18 \sqrt{2}(3 + 2 \sqrt{2})

 {x}^{3}  -   \dfrac{1}{ {x}^{3} } - 9 - 6 \sqrt{2} =27 +16 \sqrt{2}  + 54 \sqrt{2} +36(2)

{x}^{3}  -   \dfrac{1}{ {x}^{3} } - 9 - 6 \sqrt{2} =27 +70 \sqrt{2} +72

{x}^{3}  -   \dfrac{1}{ {x}^{3} } - 9 - 6 \sqrt{2} =70 \sqrt{2} +99

{x}^{3}  -   \dfrac{1}{ {x}^{3} } =70 \sqrt{2} +99 + 9 + 6 \sqrt{2}

{x}^{3}  -   \dfrac{1}{ {x}^{3} } =76 \sqrt{2} +108

\Huge{\boxed{\sf{{x}^{3}  -   \dfrac{1}{ {x}^{3} } =76 \sqrt{2} +108}}}


Anonymous: ooho @Kya @baat @hai
Anonymous: Awesome ⭐⭐⭐
Answered by DhanyaDA
11

ANSWER:

given

x -  \dfrac{1}{x}  = 3 + 2 \sqrt{2}

REQUIRED TO FIND:

 {x}^{3}  -  \dfrac{1}{ {x}^{3} }

METHOD:

in the attachment

we just took the given information as an equation

and then do cubic on both sides

IDENTITIES USED:

 {(x - y)}^{3}  =  {x}^{3}  -  {y}^{3}  - 3xy(x - y)

Attachments:
Similar questions