Math, asked by imtapan0101, 6 months ago

(x+1/x) ^3 expand the following​

Answers

Answered by vedwatimandavi
1

Answer:

x³+1+3x(x+1)/x³ is the expanded form

Answered by Anonymous
28

We are asked to expand (x + 1/x)^3{}

We will solve it using identity (a + b)^3{}

(a + b) {}^{3}  =  {a}^{3}  + b {}^{3} + 3ab(a + b)

\Longrightarrow(x +  \frac{1}{x} ) {}^{3}  \\   \\  \\  =  {x}^{3}  + 3x {}^{2}  \frac{1}{x}  + 3x( \frac{1}{x} ) {}^{2}  + ( \frac{1}{x} ) {}^{3}

Now simplify each term

x {}^{3}  + 3x {}^{2}  \frac{1}{x}  + 3x( \frac{1}{x} ) {}^{2}  + ( \frac{1}{x} ) {}^{3}  \\  \\  =  {x}^{3}  + 3x +  \frac{3}{x}  +  \frac{1}{x {}^{3} }

Hence,  {x}^{3}  + 3x +  \frac{3}{x}  +  \frac{1}{x {}^{3} } is the solution.

Some useful identities:-

→ (a + b)^2 = a^2 + 2ab + b^2

→ (a – b)^2 = a^2 – 2ab + b^2

→ a^2 – b^2 = (a + b) (a – b)

→ (a + b + c)^2 = a^2 + b^2 + c^2 + 2ab + 2bc + 2ca

→ (a + b – c)^2 = a^2 + b^2 + c^2 + 2ab – 2bc – 2ca

→ (a – b – c)^2 = a^2 + b^2 + c^2 – 2ab + 2bc – 2ca

→ (a + b)^3 = a^3 + b^3 + 3ab(a + b)

→ (a – b)^3 = a^3 – b^3 – 3ab(a – b)

→ (a^3 + b^3) = (a + b) (a^2 – ab + b^2)

→ (a^3 – b^3) = (a – b) (a^2 + ab + b^2)

Similar questions