Math, asked by aryarao2037, 5 months ago

(X - 1/x)^3 expand using binomial theorem

Answers

Answered by abhi569
2

Answer:

x³ - 1/x³ - 3x + 3/x

Step-by-step explanation:

=> (x - 1/x)³

\small{=> ^3 C_0.x^3.(\frac{-1}{x})^0 + ^3C_1.x^2.(-\frac{1}{x})^1 + ^3C_2.x^1.(-\frac{1}{x})^2 + ^3C_3.x^0.(\frac{-1}{x})^3}

=> (1)a³(1) + 3x²(-1/x)¹+ 3x¹(-1/x)² + (1)(1)(-1/x)³

=> x³ - 3x²(1/x) + 3x(1/x²) - 1/x³

=> x³ - 3x + 3/x - 1/x³

=> x³ - 1/x³ - 3x + 3/x

Answered by AnishKumar0001
0

Answer:

kzhw,vslkazuskssusm wyeheekecegeheghedjddhdudhehegdgsgdgdhdxyps

Step-by-step explanation:

xsnsgdodgddhdowhoqgwpp

wjejjejjeurjdhdelhskwjsjdjdhhdhdhdhdhdgehshsjjzgnfgkgdeggeggeeghehhgfffgggfftfitirhrdjfffjfifjjdjdjdijudjfijdhdyjdushrr

Similar questions