x(1 + x)³ find the derivative
Answers
Answer:
4x³ + 9x² + 6x + 1
Step-by-step explanation:
To find ---> Derivative of x ( 1 + x )³
Solution---> Let y = x ( 1 + x )³
We have an identity
(a + b )³ = a³ + b³ + 3ab( a+ b ) , we get
=> y = x { 1 + x³ + 3x ( 1 + x ) }
= x ( 1 + x³ + 3x + 3x² )
= x + x x³ + 3 x x + 3 x x²
We have a law of exponent
aᵐ aⁿ = aᵐ⁺ⁿ , applying it , we get
= x + x¹⁺³ + 3x¹⁺¹ + 3 x¹⁺²
= x + x⁴ + 3x² + 3x³
=> y = x⁴ + 3x³ + 3x² + x
Differentiating with respect to x , we get
=> dy/dx = d/dx ( x⁴ + 3x³ + 3x² + x )
We have a formula of differentiation
d / dx (xⁿ) = nxⁿ⁻¹ , applying it , we get
= d/dx (x⁴) + d/dx (3x³) +d/dx (3x²) + d/dx (x)
= 4x⁴⁻¹ + 3 (3)x³⁻¹ + 3 (2x²⁻¹) + 1
dy /dx= 4x³ + 9x² + 6x + 1
Question :----- Find the derivative of x(1+x)³
Formula to be used :------
- (a+b)³ = a³+b³+3ab(a+b)
- d/dx(x^n+AX+C) = nx+A
- d/dx(x^n) = n×x^(n-1)
- x^0 = 1
Solving the Equation first ,
x(1+x)³
→ x[1+x³+3x(1+x)]
→ x[x³+3x²+3x+1]
→ [x⁴+3x³+3x²+x]
Now , differentiate the equation we get,
(Hope it helps you)