Math, asked by Ssauravs8049, 1 year ago

x + 1/x =3 find the value of x3 + 1/x3

Answers

Answered by ArchitectSethRollins
9
Hi friend
-------------

Given that : -
 \boxed{x +  \frac{1}{x}  = 3}

To find : -
x {}^{3}  +  \frac{1}{x {}^{3} }  =  ?

Now,

x + 1/x = 3

On squaring both sides,

(x + 1/x)² = (3)²

=> x² + 2 × x × 1/x + 1/x² = 9

=> x² + 1/x² = 9 - 2

=> x² + 1/x² = 7 ......(i)

Then,

x³ + 1/x³

= (x + 1/x)(x² - x ×1/x + 1/x²). [using identity : a³ + b³ = (a + b)(a² - ab + b²)]

= 3 × (x² + 1/x² - 1)

= 3 × (7 - 1). [From (i)]

= 3 × 6

= 18

HOPE IT HELPS
Answered by harshitha202034
1

Answer:

Using  \:  \: the \:  \:  identity :  \\  {(a + b)}^{3}  =  {a}^{3}  +  {b}^{3}  + 3ab(a + b) \\ Here, \\ a = x \\ b =  \frac{1}{x}

Step-by-step explanation:

x +  \frac{1}{x}  = 3 \\  \\  {x}^{3}  +  \frac{1}{ {x}^{3} }  =  {3}^{3}  \\  {x}^{3}  +  \frac{1}{ {x}^{3} }  + (3 \times  \cancel x \times  \frac{1}{ \cancel x} )(x +  \frac{1}{x} ) = 27 \\  {x}^{3}  +  \frac{1}{ {x}^{3} }  + 3(3) = 27 \\  {x}^{3}  +  \frac{1}{ {x}^{3} }  + 9 = 27 \\  {x}^{3}  +  \frac{1}{ {x}^{3} }  = 27 - 9 \\  \boxed{ \large {x}^{3}  +  \frac{1}{ {x}^{3} } = \underline{ \underline{ 18}}}

Similar questions