Math, asked by spsagar1007, 11 months ago

x+1/x=3 so find the value of x⁴+1/x⁴=?​

Answers

Answered by rajedhiya
3

Step-by-step explanation:

Hey buddy,

x + 1/x = 3

Squaring both sides,

(x + 1/x)² = 3^2

x² + 1/x² + 2×x×1/x = 9

x² + 1/x² + 2 = 9

x² + 1/x² = 7

Now, again squaring both sides,

(x² + 1/x²)² = 7²

x⁴ + 1/x⁴ + 2×x²×1/x²  = 49

x⁴ + 1/x⁴ + 2 = 49

∴ x⁴ + 1/x⁴ = 47

Answered by anu24239
4

\huge\mathfrak\red{Answer}

x +  \frac{1}{x}  = 3 \\  \\ squaring \: on \: both \: side \\   \\  {(x +  \frac{ 1 }{x} )}^{2}  = 9 \\  {x}^{2}  +  \frac{1}{ {x}^{2} }  + 2(x)( \frac{1}{x} ) = 9 \\  {x}^{2}  +  \frac{1}{ {x}^{2} }  + 2 = 9 \\  {x}^{2}  +  \frac{1}{ {x}^{2} }  = 7 \\  \\ take \: square \: on \: both \: sides \\  \\  {( {x}^{2} +  \frac{1}{ {x}^{2} })  }^{2}  = 49 \\  {x}^{4}  +  \frac{1}{ {x}^{4} }  + 2( {x}^{2} )( \frac{1}{ {x}^{4} } ) = 49 \\  {x}^{4}  +  \frac{1}{ {x}^{4} }  + 2 = 49 \\  \\  |answer |  \\  {x}^{4}  +  \frac{1}{ {x}^{4} }  = 47

Similar questions