Math, asked by omkesherwani, 1 year ago

x+1/x=3 then find the value of x^6+1/x^6 =?

Answers

Answered by shadowsabers03
143

 x + \frac{1}{x} = 3 \\ \\ \\ (x + \frac{1}{x})^2 = 3^2 \\ \\ = x^2 + \frac{1}{x^2} + (2 \times x \times \frac{1}{x}) = 9 \\ \\ = x^2 + \frac{1}{x^2} + 2 = 9 \\ \\ x^2 + \frac{1}{x^2} = 9 - 2  = 7 \\ \\ \\ (x^2 + \frac{1}{x^2})^2 = 7^2 \\ \\ = x^4 + \frac{1}{x^4} + (2 \times x^2 \times \frac{1}{x^2}) = 49 \\ \\ = x^4 + \frac{1}{x^4} + 2 = 49 \\ \\ x^4 + \frac{1}{x^4} = 49 - 2 = 47 \\ \\ \\

 \\ \\ \\ (x + \frac{1}{x})^6 = 3^6 \\ \\ = x^6 + (6 \times x^5 \times \frac{1}{x}) + (15 \times x^4 \times \frac{1}{x^2}) + (20 \times x^3 \times \frac{1}{x^3}) + (15 \times x^2 \times \frac{1}{x^4}) + (6 \times x \times \frac{1}{x^5}) + \frac{1}{x^6} = 729 \\ \\ = x^6 + 6x^4 + 15x^2 + 20 + \frac{15}{x^2} + \frac{6}{x^4} + \frac{1}{x^6} = 729 \\ \\ = x^6 + 6(x^4 + \frac{1}{x^4}) + 15(x^2 + \frac{1}{x^2}) + 20 + \frac{1}{x^6} = 729 \\ \\ = x^6 + (6 \times 47) + (15 \times 7) + 20 + \frac{1}{x^6} = 729 \\

 \\ \\ \\ = x^6 + 282 + 105 + 20 + \frac{1}{x^6} = 729 \\ \\ = x^6 + \frac{1}{x^6} + 407 = 729 \\ \\ \\ x^6 + \frac{1}{x^6} = 729 - 407 \\ \\ = x^6 + \frac{1}{x^6} = 322

∴ 322 is the answer.

Hope this may be helpful.

Please mark my answer as the brainliest if this may be helpful.

Thank you. Have a nice day.

Answered by talasilavijaya
3

Answer:

The value of x^{6} +\frac{1}{x^{6} } is 322.

Step-by-step explanation:

Given an equation, x+\frac{1}{x} =3

cubing on both sides,

                               \big(x+\frac{1}{x}\big)^{3}  =3^{3}

 x^{3} +\frac{1}{x^{3} }+3\times x\times\frac{1}{x} \big(x+\frac{1}{x}\big)=27

              x^{3} +\frac{1}{x^{3} }+3\big(x+\frac{1}{x}\big)=27

                     x^{3} +\frac{1}{x^{3} }+3(3)=27

                                x^{3} +\frac{1}{x^{3} }=18

Given to find x^{6} +\frac{1}{x^{6} }, which can be written as

              (x^{3})^{2}  +\frac{1}{(x^{3})^{2} }=\big(x^{3}+\frac{1}{x^{3}} }\big)^{2} -2\times x \times \frac{1}{x}

                                  =(18)^{2} -2=324-2=322

Therefore, the value of x^{6} +\frac{1}{x^{6} } is 322.

Similar questions