x+(1÷x)=3 then find x^2(1÷x^2)
Answers
Answer:
X + 1/x = 3…(i)
We know ,
(X+1/x)^2 = x^2 + (1/x)^2 + 2(x * 1/x)
Substituting value from (i)
(3)^2 = x^2+(1/x)^2+2
= 9–2 = x^2+(1/x)^2
X^2 + (1/x)^2 = 7.
Answer:
The value of x² + ( 1 / x² ) is 7.
Step-by-step-explanation:
We have given that,
x + ( 1 / x ) = 3
We have to find the value of
x² + ( 1 / x² ).
Now,
x + ( 1 / x ) = 3
By squaring both sides, we get,
[ x + ( 1 / x ) ]² = 3²
We know that,
( a + b )² = a² + 2ab + b²
⇒ x² + ( 1 / x² ) + 2 * x * 1 / x = 9
⇒ x² + ( 1 / x² ) + 2 = 9
⇒ x² + ( 1 / x² ) = 9 - 2
⇒ x² + ( 1 / x² ) = 7
∴ The value of x² + ( 1 / x² ) is 7.
─────────────────────
Additional Information:
Some Algebraic Identities:
1. ( a + b )² = a² + 2ab + b²
2. ( a - b )² = a² - 2ab + b²
3. a² - b² = ( a + b ) ( a - b )
4. ( a + b )³ = a³ + 3a²b + 3ab² + b³
5. ( a - b )³ = a³ - 3a²b + 3ab² - b³
6. a³ + b³ = ( a + b ) ( a² + b² - ab )
7. a³ - b³ = ( a - b ) ( a² + b² + ab )
8. ( a + b + c )² = a² + b² + c² + 2ab + 2bc + 2ac
9. ( a + b + c )³ = a³ + b³ + c³ + 3 ( a + b ) ( b + c ) ( c + a )