Math, asked by yugshukla8, 11 months ago

x-1/x =3 then x⁴+1/x⁴​

Answers

Answered by konrad509
1

x-\dfrac{1}{x}=3\\\\x^2-2+\dfrac{1}{x^2}=9\\\\x^2+\dfrac{1}{x^2}=11\\\\x^4+2+\dfrac{1}{x^4}=121\\\\x^4+\dfrac{1}{x^4}=119

Answered by Sharad001
100

Question :-

 \sf{if \: x  -   \frac{1}{x}  = 3 \: then \: find \:  {x}^{4}   +   \frac{1}{ {x}^{4} } } \\  \\

Answer :-

 \implies \: \boxed{ \sf{ {x}^{4}  +  \frac{1}{ {x}^{4}  } = 119}} \:

To Find :-

 \implies \sf{  {x}^{4}  +  \frac{1}{ {x}^{4} } } \\

Formula used :-

 \rightarrow  \star  \:  \:  \sf{  {(x - y)}^{2} =  {x}^{2}   +  {y}^{2}  - 2xy} \\  \rightarrow \star \:  \sf{  {(x + y)}^{2}  =  {x}^{2}  +  {y}^{2}  + 2xy}

Solution :-

According to the question,

 \rightarrow \:  \sf{x -   \frac{1}{x}  = 3} \\  \\  \sf{squaring \: on \: both \: sides \: } \\  \\  \rightarrow \sf{ {x}^{2}  +  \frac{1}{ {x}^{2} }  - 2 \: x \times  \frac{1}{x}  = 9} \\  \\  \rightarrow \sf{  {x}^{2}  +  \frac{1}{ {x}^{2} }  = 11} \\   \\  \text{again \: squaring \: on \: both \: sides \: } \\  \\  \rightarrow \sf{ {x}^{4}  +  \frac{1}{ {x}^{4} }  + 2 {x}^{2}  \times  \frac{1}{ {x}^{2} }  = 121} \\  \\  \rightarrow \boxed{ \sf{ {x}^{4}  +  \frac{1}{ {x}^{4}  } = 119}}

_________________________________

Similar questions