Math, asked by zaidch550, 5 months ago

(x+1)(x+3)(x-5)(x-7)=192

Answers

Answered by Flaunt
12

\huge\bold{\gray{\sf{Answer:}}}

\bold{Explanation:}

(x+1)(x+3)(x-5)(x-7)=192

x(x + 3) + 1(x + 3)[(x - 5)(x - 7)]= 192

{x}^{2}  + 3 x + x + 3[(x - 5)(x - 7)] =192

 {x}^{2}  + 4x + 3 + x(x - 7) - 5(x - 7)=192

   {x}^{2}  + 4x + 3 +  {x}^{2}  - 7x - 5x + 35 = 192

 =  > 2 {x}^{2}  + 4x - 7x - 5x + 3 + 35 = 192

 =  > 2 {x}^{2}  - 8x + 38 - 192 = 0

 =  > 2 {x}^{2}  - 8x + 154 = 0

Taking 2 common from equation :-

 =  >  {x}^{2}  - 4x + 77 = 0

 =  >  {x}^{2}  - 11x + 7x + 77 = 0

 =  > x(x - 11) - 7(x - 11) = 0

 =  > (x - 7)(x - 11) = 0

=>x-7=0

{\boxed{x = 7}}

=>x-11=0

{\boxed{x = 11}}

\therefore{\bold{Roots \:are\: x=7\& \:x=11}}

Similar questions