Math, asked by johan4384, 4 months ago

x +1/x = 4 , find the values of the following [ i ] x - 1 /x​

Answers

Answered by jaswasri2006
4

The Value of x = ⅓

 \\  \\  \\  \\

Mark as Brainliest answer please my friend

Attachments:
Answered by mathdude500
4

\begin{gathered}\begin{gathered}\bf Given -  \begin{cases} &\sf{x + \dfrac{1}{x}  = 4}  \end{cases}\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\bf  To \:  Find :-  \begin{cases} &\sf{x - \dfrac{1}{x} }  \end{cases}\end{gathered}\end{gathered}

\begin{gathered}\Large{\bold{\pink{\underline{Formula \:  Used \::}}}}  \end{gathered}

 \tt \:  ⟼  {(x + y)}^{2}  -  {(x - y)}^{2}  = 4xy

\large\underline\purple{\bold{Solution :-  }}

❖ We know that

 \tt \:   {(x + y)}^{2}  -  {(x - y)}^{2}  = 4xy

\bf \:  Replace \: y \: by \:  \frac{1}{x}  \: we \: get

 \tt \: :   ⟼  {(x + \dfrac{1}{x} )}^{2}  -  {(x - \dfrac{1}{x}) }^{2}  = 4 \times x \times \dfrac{1}{x}

 \tt \ \: :  ⟼  {4}^{2}  -  {(x - \dfrac{1}{x} )}^{2}  = 4 \:  \:  \: [ \because \: x \:  +  \dfrac{1}{x}  = 4]

 \tt \ \: :  ⟼ 16 -  {(x - \dfrac{1}{x}) }^{2}  = 4

 \tt \ \: :  ⟼  {(x - \dfrac{1}{x}) }^{2}  = 16 - 4

 \tt \ \: :  ⟼  {(x - \dfrac{1}{x} )}^{2}  = 12

 \tt \ \: :  ⟼ x - \dfrac{1}{x}  =  \sqrt{12}

 \tt \ \: :  ⟼ x - \dfrac{1}{x}  = 2 \sqrt{3}

Similar questions