Math, asked by keshavkumarom19996, 4 months ago

(x-1/x) =4 than solve((x)2+(1/(x)2) and((x)4+(1/(x)4)​

Answers

Answered by vipashyana1
1

[tex]\mathfrak{\huge{Answer:-} } \\x-\frac{1}{x}=4\\Squaring\:on\:both\:the\:sides\\{(x-\frac{1}{x})}^{2}={(4)}^{2}\\{(x)}^{2}+{(\frac{1}{x})}^{2}-2(x)(\frac{1}{x})={(4)}^{2}\\ {x}^{2} + \frac{1}{ {x}^{2} } - 2 = 16 \\ {x}^{2} + \frac{1}{ {x}^{2} } = 16 + 2 \\ \bold{ \large{ \boxed{ {x}^{2} + \frac{1}{ {x}^{2} } = 18 } } } \\Squaring\:on\:both\:the\:sides\\{( {x}^{2} + \frac{1}{ {x}^{2} })}^{2}={(18)}^{2}\\{( {x}^{2} )}^{2}+{(\frac{1}{ {x}^{2} })}^{2} + 2( {x}^{2} )(\frac{1}{ {x}^{2} })={(18)}^{2}\\ {x}^{4} + \frac{1}{ {x}^{4} } + 2 = 324 \\ {x}^{2} + \frac{1}{ {x}^{2} } = 324 - 2 \\ \bold{ \large{ \boxed{ {x}^{4} + \frac{1}{ {x}^{4} } = 322} } } [/tex]

Answered by harshitha926594
0

Answer:

 \frac{x - 1}{x}  = 4 \\ x - 1 = 4x \\  - 1 = 4x - x \\  - 1 = 3x \\  \large{ \boxed{ \underline{ \underline{ \frac{ - 1}{3} }} = x}} \\  \\  {x}^{2}  +  \frac{1}{ {x}^{2} }  \\  { (\frac{ - 1}{3}) }^{2}  +  \frac{1}{ { (\frac{ - 1}{3} )}^{2} }  \\  =  \frac{1}{9}  +  \frac{1}{ \frac{1}{9} }  \\  =  \frac{1}{9}  + (1 \times  \frac{9}{1} ) \\  =  \frac{1}{9}  + 9 \\  =  \frac{1 + 81}{9}  \\  =  \frac{82}{9}  \\  \large{ \boxed{=  \underline{ \underline{9 \frac{1}{9} }}}} \\  \\  {x}^{4}  +  \frac{1}{ {x}^{4} }  \\  =  { (\frac{ - 1}{3}) }^{4}  +  \frac{1}{ {( \frac{ - 1}{3} )}^{4} }  \\  =  \frac{1}{81}  +  \frac{1}{ \frac{1}{81} }  \\  =  \frac{1}{81}  + (1 \times  \frac{81}{1} ) \\  =  \frac{1}{81}  + 81 \\  =  \frac{1 + 6561}{81}  \\  =  \frac{6562}{81}  \\  \large{ \boxed{=  \underline{ \underline{ 81 \frac{1}{81} }}}}

Similar questions