(x-1/x) =4 than solve((x)2+(1/(x)2) and((x)4+(1/(x)4)
Answers
Answered by
1
[tex]\mathfrak{\huge{Answer:-} } \\x-\frac{1}{x}=4\\Squaring\:on\:both\:the\:sides\\{(x-\frac{1}{x})}^{2}={(4)}^{2}\\{(x)}^{2}+{(\frac{1}{x})}^{2}-2(x)(\frac{1}{x})={(4)}^{2}\\ {x}^{2} + \frac{1}{ {x}^{2} } - 2 = 16 \\ {x}^{2} + \frac{1}{ {x}^{2} } = 16 + 2 \\ \bold{ \large{ \boxed{ {x}^{2} + \frac{1}{ {x}^{2} } = 18 } } } \\Squaring\:on\:both\:the\:sides\\{( {x}^{2} + \frac{1}{ {x}^{2} })}^{2}={(18)}^{2}\\{( {x}^{2} )}^{2}+{(\frac{1}{ {x}^{2} })}^{2} + 2( {x}^{2} )(\frac{1}{ {x}^{2} })={(18)}^{2}\\ {x}^{4} + \frac{1}{ {x}^{4} } + 2 = 324 \\ {x}^{2} + \frac{1}{ {x}^{2} } = 324 - 2 \\ \bold{ \large{ \boxed{ {x}^{4} + \frac{1}{ {x}^{4} } = 322} } } [/tex]
Answered by
0
Answer:
Similar questions