Math, asked by hhuz, 1 year ago

x - 1/x = 4,
then find the value of :
x⁴ + (1/x⁴)


source : advisor textbook (class 8)​

Answers

Answered by Anonymous
96

Answer :-

x⁴ + 1/x⁴ = 322

\rule{150}2

Given:-

  • \sf{x\:-\:\dfrac{1}{x}\:=\:4}

Find:-

\sf{x^4\:+\:\dfrac{1}{x^4}}

Solution:-

\implies\:\sf{\bigg(x\:-\:\dfrac{1}{x}\bigg)^2\:=\:(4)^2}

(a + b)² = a² + b² + 2ab

\implies\:\sf{x^2\:+\:\dfrac{1}{x^2}\:-\:2x\dfrac{1}{x}\:=\:16}

\implies\:\sf{x^2\:+\:\dfrac{1}{x^2}\:-\:2\:=\:16}

\implies\:\sf{x^2\:+\:\dfrac{1}{x^2}\:=\:16\:+\:2}

\implies\:\sf{x^2\:+\:\dfrac{1}{x^2}\:=\:18}

Now, do squaring on both sides

(a²)² + (b²)² = a⁴ + b⁴ + 2a²b²

\implies\:\sf{\bigg(x^2\:+\:\dfrac{1}{x^2}\bigg)^2\:=\:(18)^2}

\implies\:\sf{x^4\:+\:\dfrac{1}{x^4}\:+\:2x^2\dfrac{1}{x^2}\:=\:324}

\implies\:\sf{x^4\:+\:\dfrac{1}{x^4}\:+\:2\:=\:324}

\implies\:\sf{x^4\:+\:\dfrac{1}{x^4}\:=\:324\:-\:2}

\implies\:\sf{x^4\:+\:\dfrac{1}{x^4}\:=\:322}

Answered by Itsritu
35

Answer:

for \: showing \: full \: answer \: click \: on \: photo.

Attachments:
Similar questions