Math, asked by manisha6331, 9 months ago

X - 1 / X=√5 and x2+1/x2=7 find the value of x3+1/x3​

Answers

Answered by prakash1951
4

Answer:

24 is the correct answers

Hope you understood the answer

Attachments:
Answered by Darkrai14
12

★Given:-

  • \sf x - \dfrac{1}{x} = \sqrt{5}

  • \sf x^2 + \dfrac{1}{x^2} = 7

★To find→

  • \sf x^3 + \dfrac{1}{x^3}

★Solution:-

First we will find \sf x + \dfrac{1}{x}

We know that,

(a+b)² = a²+b²+2ab

Using this identity,

  • \sf \leadsto\Bigg (x + \dfrac{1}{x} \Bigg )^2 = (x)^2 + \Bigg ( \dfrac{1}{x} \Bigg )^2 + 2 \times x \times \dfrac{1}{x}

  • \sf \leadsto\Bigg (x + \dfrac{1}{x} \Bigg )^2 = x^2 + \dfrac{1}{x^2}+ 2

  • \sf \leadsto \Bigg (x + \dfrac{1}{x} \Bigg )^2 = 7 + 2

  • \sf \leadsto\Bigg (x + \dfrac{1}{x} \Bigg )^2 = 9

  • \sf \leadsto x + \dfrac{1}{x}  = \sqrt{9}

  • \sf \leadsto x + \dfrac{1}{x}  = 3

_________________________

Now, we will find \sf x^3+\dfrac{1}{x^3}

We know that,

\boxed{\sf a^3+b^3 = (a+b)(a^2+b^2-ab)}

Using this identity,

\sf \longmapsto x^3 + \dfrac{1}{x^3} = \Bigg ( x + \dfrac{1}{x} \Bigg ) \Bigg ( (x)^2 + \Bigg ( \dfrac{1}{x} \Bigg )^2 - x \times \dfrac{1}{x} \Bigg )

\sf \longmapsto x^3 + \dfrac{1}{x^3} = (3 )(x^2 +\dfrac{1}{x^2} - 1)

\sf \longmapsto x^3 + \dfrac{1}{x^3} = (3 )(7 - 1)

\sf \longmapsto x^3 + \dfrac{1}{x^3} = (3 )(6)

\sf \longmapsto x^3 + \dfrac{1}{x^3} = 18

\boxed{ \bold{x^3 + \dfrac{1}{x^3} = 18}}

Similar questions