Math, asked by stylishsaloni29, 4 months ago

x-1/x=5 find the value of x^2+1/x2

Answers

Answered by Anonymous
8

Solution:-

Given

 \rm \to \: x -  \dfrac{1}{x}  = 5

To find the value of

 \rm \to \:  {x}^{2}  -  \dfrac{1}{ {x}^{2} }  = 5

So now take

 \rm \to \: x -  \dfrac{1}{x}  = 5

Squaring on both side

 \rm \to \bigg(x -  \dfrac{1}{x}  \bigg) ^{2}  = (5) ^{2}

Using this identity

 \rm \to(a - b) {}^{2}  =  {a}^{2}   +  {b}^{2}  - 2ab

We get

 \rm \to \:  {x}^{2}  +  \dfrac{1}{ {x}^{2} }  - 2 \times x \times  \dfrac{1}{x}  = 25

 \rm \to \:  {x}^{2}  +  \dfrac{1}{ {x}^{2} }  - 2 \times  \cancel{x} \times  \dfrac{1}{ \cancel{x}}  = 25

 \rm \to \:  {x}^{2}  +  \dfrac{1}{ {x}^{2} }  - 2 = 25

 \rm \to {x}^{2}  +  \dfrac{1}{ {x}^{2} }  = 25 + 2

 \rm \to \:  {x}^{2}  +  \dfrac{1}{ {x}^{2} }  = 27

So value of

 \rm \to \:  {x}^{2}  +  \dfrac{1}{ {x}^{2} }  \:  \: is \:  \: 27

Answer is 27


Anonymous: Awesome!
Answered by Mister360
6

Step-by-step explanation:

Required answer:-

x-{\dfrac {1}{x}}=5

  • Now use identity

{\boxed{(a-b){}^{2}={a}^{2}-2ab+{b}^{2}}}

  • Take squares of both sides

{:}\mapsto {(x-{\dfrac {1}{x}})^{2}={5}^{2}}

{:}\mapsto {x}^{2}+{\dfrac {1}{x}}{}^{2}-2×{\cancel {x}}×{\dfrac {1}{{\cancel{x}}}}=25

{:}\mapsto {x}^{2}+{\dfrac {1}{{x}^{2}}}-2=25

  • Now interchange both sides

{:}\mapsto {x}^{2}+{\dfrac {1}{{x}^{2}}}=25+2

{:}\mapsto {\underline {\boxed {\bf {{x}^{2}+{\dfrac {1}{{x}^{2}}}=27}}}}


Anonymous: Nice!
Similar questions