Math, asked by arravprusty35, 11 months ago

X-1/X=√5 find the value of x^4-1/x^4

Answers

Answered by AadiZnBrother
0

Answer:

25

Step-by-step explanation:

X-(1/X) =√5

now, to find the value of x^4-1/X^4

we will raise the power to 4 on both sides

So,

it will become

x^4-1/x^4 = √ 5^4

so x^4-1/x^4 =25

Answered by IamIronMan0
0

Answer:

Take square of first equation

(x -  \frac{1}{x} ) {}^{2}  = 5 \\  \\  {x}^{2}  +  \frac{1}{ {x}^{2} }  - 2(x)( \frac{1}{x} ) = 5 \\  \\  {x}^{2}   +  \frac{1}{ {x}^{2} }  = 5 + 2 = 7

Now note that

(x +  \frac{1}{x} ) {}^{2}  = (x -  \frac{1}{x} ) {}^{2}  + 4(x)( \frac{1}{x} ) \\  \\( x +  \frac{1}{x} ) {}^{2}  = 5 + 4 = 9 \\  \\ x +  \frac{1}{x}  = 3

To reduce complexity assume x > 0.

Now

 {x}^{4}  -  \frac{1}{ {x}^{4} }  \\  \\  =  ({x}^{2} ) {}^{2}  - ( \frac{1}{ {x}^{2} } ) {2}^{2}  \\  \\  = ( {x}^{2}  +  \frac{1}{ {x}^{2} } )( {x}^{2}  -  \frac{1}{ {x}^{2} } ) \\  \\  = ( {x}^{2}  +  \frac{1}{ {x}^{2} } )(x +  \frac{1}{x} )(x -  \frac{1}{x} ) \\  \\ put \: values \: from \: above \\   = 7 \times  3 \times  \sqrt{5}  \\  = 21 \sqrt{5}

Similar questions