Math, asked by Tanvir41, 10 months ago

x-1/x=5 find x^3-1/x^3​

Answers

Answered by Abhishek474241
1

AnSwEr

{\tt{\red{\underline{\large{Given}}}}}

\tt{X-\dfrac{1}{X}}=5

{\sf{\green{\underline{\large{To\:find}}}}}

\tt{X^3-\dfrac{1}{X^3}}

{\sf{\pink{\underline{\Large{Explanation}}}}}

We know that

\boxed{\boxed{\sf\red{(a+b)^2=a^2+b^2+2ab}}}

Therefore

\tt{(X-\dfrac{1}{X})^2=X^2+\dfrac{1}{X^2}-2\frac{1}{X}\times{X}}

Solving

\tt{X+\dfrac{1}{X}}=5

Both side squaring

\tt{(X+\dfrac{1}{X})^2}=(5)²

\implies\tt{(X+\dfrac{1}{X})^2=X^2+\dfrac{1}{X^2}-2\frac{1}{X}\times{X}}=25

\implies\tt{25=X^2+\dfrac{1}{X^2}-2\frac{1}{X}\times{X}}

\implies\tt{25=X^2+\dfrac{1}{X^2}-2}

\implies\tt{25-2=X^2+\dfrac{1}{X^2}}

\implies\tt{23=X^2+\dfrac{1}{X^2}}

Now

\tt{X^3-\dfrac{1}{X^3}}

Formula used

\implies\tt{X^3-\dfrac{1}{X^3)}=(X-\dfrac{1}{x})(X^2+\dfrac{1}{X^2}+\frac{1}{X}\times{X)}}

¶utting value

\implies\tt{X^3-\dfrac{1}{X^3}={5}(23+1)}

\implies\tt{X^3-\dfrac{1}{X^3}={5}(24)}

\implies\tt{X^3-\dfrac{1}{X^3}=120}

Answered by BrainlyIAS
8

\bf{\red{\bigstar}} Given :

\bf{x-\dfrac{1}{x}=5}

\bf{\red{\bigstar}} To Find :

\bf{x^3-\dfrac{1}{x^3}= \;\bold{?}}

\bf{\red{\bigstar}} Formula :

\bf{(a-b)^3=a^3-b^3-3ab(a-b)}

\bf{\red{\bigstar}} Solution :

\bf{x-\dfrac{1}{x}=5}

Now cubing on both sides , we get ,

\implies \bf{(x-\dfrac{1}{x})^3=5^3}\\\\\implies \bf{x^3-(\dfrac{1}{x})^3-3.x.\dfrac{1}{x}(x-\dfrac{1}{x})=125}\\\\\implies \bf{x^3-\dfrac{1}{x^3} -3(x-\dfrac{1}{x})=125}\\\\\implies \bf{x^3-\dfrac{1}{x^3} =125+3(5)\;\;\;[\;From\;given\ data\;]}\\\\\implies \bf{\blue{x^3-\dfrac{1}{x^3} =140}}

Similar questions