Math, asked by ruchi2169, 4 months ago

x-1/x=5 then find x4+1/x4
x - 1\x = 5  find   \: x {}^{4} + 1 \div x {4}^{2}

Answers

Answered by Arceus02
0

Given:-

  • x -  \dfrac{1}{x}  = 5

\\

To find :-

  • {x}^{4} +  \dfrac{1}{x ^4}

\\

Answer:-

Given that,

x -  \dfrac{1}{x}  = 5

Squaring both sides,

 \longrightarrow  { \bigg(x -  \dfrac{1}{x} \bigg)}^{2}   = {5}^{2}

Expanding L.H.S. using (a - b)² = a² + b² - 2ab, with a = x and b = 1/x,

 \longrightarrow   {x}^{2} +  \dfrac{1}{ {x}^{2} }  - 2 \bigg(x \times  \dfrac{1}{x} \bigg) = 25

 \longrightarrow   {x}^{2} +  \dfrac{1}{ {x}^{2} }  - 2  = 25

 \longrightarrow   {x}^{2} +  \dfrac{1}{ {x}^{2} }    = 27

Again squaring both sides,

 \longrightarrow  { \bigg( {x}^{2}   +  \dfrac{1}{ {x}^{2} } \bigg)}^{2}   = {27}^{2}

Expanding L.H.S. using (a + b)² = a² + b² + 2ab, with a = x² and b = 1/x²,

 {\longrightarrow   { ({x}^{2}) }^{2} +  \dfrac{1}{ ({ {x}^{2}) }^{2} }  + 2 \bigg( {x}^{2}  \times  \dfrac{1}{ {x}^{2} } \bigg) = 729}

 \longrightarrow {x}^{4} +  \dfrac{1}{x ^4}   + 2  = 729

 \longrightarrow  \underline{ \underline{{x}^{4} +  \dfrac{1}{x ^4}    =  727}}

Similar questions