Math, asked by ansh9884, 9 months ago

(x+1/x) = 6 find the value of (x-1/x)​

Answers

Answered by Anonymous
15

ANSWER✔

\large\underline\bold{GIVEN,}

\sf\dashrightarrow  x+ \dfrac{1}{x } =6

\large\underline\bold{TO\:FIND,}

\sf\dashrightarrow THE\:VALUE\:OF \:  x- \dfrac{1}{x}

✯IDENTITY IN USE,

\large{\boxed{\bf{ \star\:\:(a+b)^2=a^2+b^2+2ab \:\: \star}}}

\large{\boxed{\bf{ \star\:\: (a-b)^2=a^2+b^2-2ab\:\: \star}}}

\large\underline\bold{SOLUTION,}

\sf\therefore x+ \dfrac{1}{x } =6

\purple{\text{ squaring both sides}}

\sf\implies \bigg( x+ \dfrac{1}{x}\bigg)^2 =(6 )^2

\sf\implies \bigg( x^2+ \dfrac{1}{x^2} +2\bigg)= 36

\sf\implies  x^2+ \dfrac{1}{x^2} =36-2

\sf\implies  x^2+ \dfrac{1}{x^2} =34 \: -----\boxed{equation\:1}

NOW,

TAKING,

\sf\therefore  x- \dfrac{1}{x}

\purple{\text{ squaring the equation}}

\sf\implies \bigg( x- \dfrac{1}{x}\bigg)^2= x^2 + \dfrac{1}{x^2}-2

\sf\implies \bigg( x- \dfrac{1}{x}\bigg)^2= 34-2 \: -----\boxed{from\: equation\:1}

\sf\implies  \bigg( x- \dfrac{1}{x}\bigg)^2= 34-2

\sf\implies  \bigg( x- \dfrac{1}{x}\bigg)^2= 32

\sf\implies  x- \dfrac{1}{x}= \pm \sqrt{32}

\large{\boxed{\bf{ \star\:\:  x- \dfrac{1}{x}= \pm \sqrt{32}\:\: \star}}}

\large\underline\bold{THE\:VALUE\:OF \:  x- \dfrac{1}{x}\:IS\: \pm \sqrt{32}}

______________________

Answered by ItzCaptonMack
0

\huge\underline{\red{⛥❃꧁αղsw៩Ʀ꧂⛥❃}}

\large\underline\bold{GIVEN,}

\sf\dashrightarrow  x+ \dfrac{1}{x } =6

\large\underline\bold{TO\:FIND,}

\sf\dashrightarrow THE\:VALUE\:OF \:  x- \dfrac{1}{x}

\large{\boxed{\bf{ \star\:\:(a+b)^2=a^2+b^2+2ab \:\: \star}}}

\large{\boxed{\bf{ \star\:\: (a-b)^2=a^2+b^2-2ab\:\: \star}}}

\large\underline\bold{SOLUTION,}

\sf\therefore x+ \dfrac{1}{x } =6

\purple{\text{ squaring both sides}}

\sf\implies \bigg( x+ \dfrac{1}{x}\bigg)^2 =(6 )^2

\sf\implies \bigg( x^2+ \dfrac{1}{x^2} +2\bigg)= 36

\sf\implies  x^2+ \dfrac{1}{x^2} =36-2

\sf\implies  x^2+ \dfrac{1}{x^2} =34 \: -----\boxed{equation\:1}

NOW,

TAKING,

\sf\therefore  x- \dfrac{1}{x}

\purple{\text{ squaring the equation}}

\sf\implies \bigg( x- \dfrac{1}{x}\bigg)^2= x^2 + \dfrac{1}{x^2}-2

\sf\implies \bigg( x- \dfrac{1}{x}\bigg)^2= 34-2 \: -----\boxed{from\: equation\:1}

\sf\implies  \bigg( x- \dfrac{1}{x}\bigg)^2= 34-2

\sf\implies  \bigg( x- \dfrac{1}{x}\bigg)^2= 32

\sf\implies  x- \dfrac{1}{x}= \pm \sqrt{32}

\large{\boxed{\bf{ \star\:\:  x- \dfrac{1}{x}= \pm \sqrt{32}\:\: \star}}}

\large\underline\bold{THE\:VALUE\:OF \:  x- \dfrac{1}{x}\:IS\: \pm \sqrt{32}}

______________________

Similar questions