Math, asked by md3277426, 3 months ago

x-1/x =8then what will be x²+1/x²​

Answers

Answered by Aryan0123
3

Given:

  • x - 1/x = 8

To find:

  • x² + 1/x²

Solution:

Consider the given equation

\rm{x +  \dfrac{1}{x}  = 8} \\  \\

Squaring on both sides,

 \rm{ \bigg(x +  \dfrac{1}{x}  \bigg)^{2} =  8 ^{2} } \\  \\

Split using (a + b)² = + b² + 2ab

\implies  \sf{ {x}^{2} +  \dfrac{1}{ {x}^{2} } +   \bigg(2( \not{x}) \dfrac{1}{ \not{x}} \bigg)   = 64} \\  \\

Now we have,

 \implies \rm{ {x}^{2}  +  \dfrac{1}{ {x}^{2} } + 2  =64 } \\  \\

Transpose 2 to R.H.S

 \hookrightarrow \: \rm{ {x}^{2}  +  \dfrac{1}{ {x}^{2} } = 64 - 2 } \\  \\

 \therefore \boxed{ \bf{ {x}^{2}  +  \dfrac{1}{ {x}^{2} } = 62 }} \\ \\

Know more:

 \boxed{\begin{minipage}{7 cm}\boxed{\bigstar\:\:\textbf{\textsf{Algebric\:Identity}}\:\bigstar}\\\\1)\bf\:(A+B)^{2} = A^{2} + 2AB + B^{2}\\\\2)\sf\: (A-B)^{2} = A^{2} - 2AB + B^{2}\\\\3)\bf\: A^{2} - B^{2} = (A+B)(A-B)\\\\4)\sf\: (A+B)^{2} = (A-B)^{2} + 4AB\\\\5)\bf\: (A-B)^{2} = (A+B)^{2} - 4AB\\\\6)\sf\: (A+B)^{3} = A^{3} + 3AB(A+B) + B^{3}\\\\7)\bf\:(A-B)^{3} = A^{3} - 3AB(A-B) + B^{3}\\\\8)\sf\: A^{3} + B^{3} = (A+B)(A^{2} - AB + B^{2})\\\\\end{minipage}}

Similar questions