(x-1/x) find the values of:x+1/x b)x²+1/x² c)x⁴-1/x⁴
Answers
Answered by
0
x + 1/x = 4……………(1)
Squaring both sides.
X^2 + 1/x^2+ 2 = 16
or. x^2 + 1/x^2= 14.
Again squaring both sides.
x^4 +1/x^4 +2 = 196.
or. x^4 + 1/x^4 = 194. Answer.
Answered by
0
Step-by-step explanation:
suppose x-1/x = a
x-1/x = a
=> (x-1/x)² = a²
=> x²+1/x²-2*x*1/x = a²
=> x²+1/x²-2 = a²
=> x²+1/x² = a²+2
a) (x+1/x)²
= x²+1/x²+2*x*1/x
= x²+1/x²+2
= a²+2+2 (x²+1/x² = a²+2)
= a²+4
(x+1/x)² = a²+4
=> x+1/x = √(a²+4)
b) x-1/x = a
=> (x-1/x)² = a²
=> x²+1/x²-2*x*1/x = a²
=> x²+1/x²-2 = a²
=> x²+1/x² = a²+2
c) x⁴-1/x⁴
= (x²-1/x²)(x²+1/x²)
= (x-1/x)(1+1/x)(x²+1/x²)
= a*√(a²+4)*(a²+2)
using formula (x-y)² = x²+y²-2*x*y
(x+y)² = x²+y²+2*x*y
x²-y² = (x+y)(x-y)
Similar questions