Math, asked by lakshansridhar0, 10 months ago

x+1/x=p then what is x^6+1/x^6 equal to​

Answers

Answered by Anonymous
14

\huge{\underline{\underline{\purple{♡Solution→}}}}

Given

x +  \frac{1}{x}  = p

To Find

 {x}^{6}  +  \frac{1}{ {x}^{6} }  =  \: ?

__________________________

By squaring of given Equation

 {(x +  \frac{1}{x} )}^{2}  =  {p}^{2}

 {x}^{2}  +   \frac{1}{ {x}^{2} }  + 2 \times x \times  \frac{1}{x}  =  {p}^{2}

 {x}^{2}  +  \frac{1}{ {x}^{2} }  + 2 =  {p}^{2}  \\  {x}^{2}  +  \frac{1}{ {x}^{2} }  =  {p}^{2}  - 2 -  -  -  -  - (i)

Now Cubing of this equation

 {( {x}^{2} +  \frac{1}{ {x}^{2} } ) }^{3}  =  {( {p}^{2} - 2) }^{3}

( { {x}^{2}) }^{3}  + (  { \frac{1}{ {x}^{2} }) }^{3}  + 3 \times  {x}^{2}  \times  \frac{1}{ {x}^{2} } ( {x}^{2} +  \frac{1}{ {x}^{2} }  ) = ( { {p}^{2}  - 2)}^{3}

 {x}^{6}  +  \frac{1}{ {x}^{6} }  + 3( {x}^{2}  +  \frac{1}{ {x}^{2} } ) = ( { {p}^{2}  - 2)}^{3}

Now put the value of  {x}^{2}  +  \frac{1}{ {x}^{2} } From (i)

 {x}^{6}  +  \frac{1}{ {x}^{6} }  + 3( {p}^{2}  - 2) =  {( {p}^{2} - 2) }^{3}

 {x}^{6}  +  \frac{1}{ {x}^{6} }  + 3 {p}^{2}  - 6 =  {p}^{6}  - 8 - 3 \times  {p}^{2}  \times 2( {p}^{2}  - 2) \\ {x}^{6}  +  \frac{1}{ {x}^{6} }  + 3 {p}^{2}  - 6 =  {p}^{6}  - 8 - 6 {p}^{2} ( {p}^{2}  - 2) \\ {x}^{6}  +  \frac{1}{ {x}^{6} }  +  3 {p}^{2}  - 6 =  {p}^{6}  - 8 - 6 {p}^{4}  + 12 {p}^{2}  \\ {x}^{6}  +  \frac{1}{ {x}^{6} }  =  {p}^{6}  - 8 - 6 {p}^{4}  + 12 {p}^{2}  - 3 {p}^{2}  + 6 \\ {x}^{6}  +  \frac{1}{ {x}^{6} }  =  {p}^{6}  - 6 {p}^{4}  + 9 {p}^{2}  - 2

__________________________

───── ❝ TheEnforceR ❞ ─────

Mark as Brainliest !! ✨✨

Similar questions