Math, asked by Anonymous, 4 months ago

(x+1)(x square-x+1)
with solution​

Answers

Answered by Anonymous
13

Solution:-

\qquad\quad {:}\longmapsto\sf (x+1)(x^2-x+1)

Let's use distributive formula :

{\boxed{\sf (a+b)(c+d)=a (c+d)+b (c+d)}}

Substitute the values :

\qquad\quad {:}\longmapsto\sf x (x^2-x+1)+1 (x^2-x+1)

Simplify :

\qquad\quad {:}\longmapsto\sf x^3-x^2+x+x^2-x+1

Now together like variables :

\qquad\quad {:}\longmapsto\sf x^3-x^2+x^2+x-x+1

Simplify :

\qquad\quad {:}\longmapsto\sf x^3+0+0+1

\qquad\quad {:}\longmapsto{\underline {\boxed{\bf x^3+1}}}

Answered by Anonymous
20

Answer:

Solution:-</p><p></p><p>\qquad\quad {:}\longmapsto\sf (x+1)(x^2-x+1):⟼(x+1)(x </p><p>2</p><p> −x+1)</p><p></p><p>Let's use distributive formula :</p><p></p><p>{\boxed{\sf (a+b)(c+d)=a (c+d)+b (c+d)}} </p><p>(a+b)(c+d)=a(c+d)+b(c+d)</p><p>	</p><p> </p><p></p><p>Substitute the values :</p><p></p><p>\qquad\quad {:}\longmapsto\sf x (x^2-x+1)+1 (x^2-x+1):⟼x(x </p><p>2</p><p> −x+1)+1(x </p><p>2</p><p> −x+1)</p><p></p><p>Simplify :</p><p></p><p>\qquad\quad {:}\longmapsto\sf x^3-x^2+x+x^2-x+1:⟼x </p><p>3</p><p> −x </p><p>2</p><p> +x+x </p><p>2</p><p> −x+1</p><p></p><p>Now together like variables :</p><p></p><p>\qquad\quad {:}\longmapsto\sf x^3-x^2+x^2+x-x+1:⟼x </p><p>3</p><p> −x </p><p>2</p><p> +x </p><p>2</p><p> +x−x+1</p><p></p><p>Simplify :</p><p></p><p>\qquad\quad {:}\longmapsto\sf x^3+0+0+1:⟼x </p><p>3</p><p> +0+0+1</p><p></p><p>\qquad\quad {:}\longmapsto{\underline {\boxed{\bf x^3+1}}}:⟼ </p><p>x </p><p>3</p><p> +1</p><p>	</p><p> </p><p>

Similar questions