Math, asked by sunitajangid3, 6 months ago

(x + 1/x) (x - 1/x)​

Answers

Answered by Asterinn
10

\implies \:( x +  \dfrac{1}{x} )( x  -   \dfrac{1}{x} )

we know that :-

(a+b)(a-b) = a²-b²

\implies \:( x +  \dfrac{1}{x} )( x  -   \dfrac{1}{x} ) =  {(x)}^{2}  -  { (\dfrac{1}{x}) }^{2}

\implies \:( x +  \dfrac{1}{x} )( x  -   \dfrac{1}{x} ) =  {x}^{2}  -  { \dfrac{1}{ {x}^{2} }}

Answer :

{x}^{2}  -  { \dfrac{1}{ {x}^{2} }}

____________________

\large\bf\orange{Learn\:More \: \colon}

\implies{(a+b)^2 = a^2 + b^2 + 2ab}

\implies{(a-b)^2 = a^2 + b^2 - 2ab}

\implies{(a+b)^3 = a^3 + b^3 + 3ab(a + b)}

\implies{(a-b)^3 = a^3 - b^3 - 3ab(a-b)}

\implies{(a^3+b^3)= (a+b)(a^2 - ab + b^2)}

\implies{(a^3-b^3)= (a-b)(a^2 + ab + b^2)}

_____________________

1)a^m \times a^n= {a}^{(m + n)}

2) {( {a}^{m})}^{n}   =  {a}^{mn}

3) {ab}^{n}  =  {a}^{n}  {b}^{n}

4) \frac{ {(a)}^{m} }{ {(a)}^{n} } = {a}^{m - n}

5) {a}^{ - b}  =  \frac{1}{ {a}^{b} }

_____________________

Similar questions