(X-1/x)(x+1/x)(x×x-1/x×x)(x×x×x×x+1/x×x×x×x)
Answers
Answered by
8
Answer :-
\tt x^4 - \dfrac{1}{x^4}x4−x41
Solution :-
(x - 1/x)(x + 1/x)(x² + 1/x²)
= {(x)² - (1/x)²}(x² + 1/x²)
[Because (a + b)(a - b) = a² - b² and above a = x and b = 1/x]
= (x² - 1²/x²)(x² + 1/x²)
= (x² - 1/x²)(x² + 1/x²)
= (x²)² - (1/x²)²
[Because (a + b)(a - b) = a² - b² and above a = x² and b = 1/x²]
\sf = x^{2*2} - \dfrac{(1)^2}{(x^2)^2}=x2∗2−(x2)2(1)2
\sf = x^4 - \dfrac{1}{x^{2*2}}=x4−x2∗21
\bf = x^4 - \dfrac{1}{x^4}=x4−x41
Identity used :-
(a + b)(a - b)
plz mark me as brainlist.
Similar questions