Math, asked by amanbro11, 9 months ago

(X-1/x)(x+1/x)(x×x-1/x×x)(x×x×x×x+1/x×x×x×x)​

Answers

Answered by jayanathul007
8

Answer :-

\tt x^4 - \dfrac{1}{x^4}x4−x41

Solution :-

(x - 1/x)(x + 1/x)(x² + 1/x²)

= {(x)² - (1/x)²}(x² + 1/x²)

[Because (a + b)(a - b) = a² - b² and above a = x and b = 1/x]

= (x² - 1²/x²)(x² + 1/x²)

= (x² - 1/x²)(x² + 1/x²)

= (x²)² - (1/x²)²

[Because (a + b)(a - b) = a² - b² and above a = x² and b = 1/x²]

\sf = x^{2*2} - \dfrac{(1)^2}{(x^2)^2}=x2∗2−(x2)2(1)2

\sf = x^4 - \dfrac{1}{x^{2*2}}=x4−x2∗21

\bf = x^4 - \dfrac{1}{x^4}=x4−x41

Identity used :-

(a + b)(a - b)

plz mark me as brainlist.

Similar questions