Math, asked by rachit6428, 1 year ago

√x^-1√y√y^-1√z√z^-1√x = 1

Answers

Answered by Anonymous
16

Question:

→ Prove this :

 \sf \because { \sqrt{x} }^ { - 1} \times \sqrt{y} \times { \sqrt{y} }^{ - 1} \times \sqrt{z} \times { \sqrt{z} }^{ - 1} \times \sqrt{x} = 1.

Answer:

1 .

Step-by-step explanation:

We have an equation ,

 \sf \because { \sqrt{x} }^ { - 1} \times \sqrt{y} \times { \sqrt{y} }^{ - 1} \times \sqrt{z} \times { \sqrt{z} }^{ - 1} \times \sqrt{x} = 1. \\ \\ \sf \implies \frac{1}{ \sqrt{x} } \times \sqrt{y} \times \frac{1}{ \sqrt{y} } \times \sqrt{z} \times \frac{1}{ \sqrt{z} } \times \sqrt{x} = 1. \\ \\ \sf \implies \frac{1}{ \cancel{\sqrt{x} }} \times \cancel{\sqrt{x}} \times \cancel{\sqrt{y} } \times \frac{1}{ \cancel{\sqrt{y} }} \times \cancel{\sqrt{z} } \times \frac{1}{ \cancel{\sqrt{z} }} = 1. \\ \\ \sf \implies 1 \times 1 \times 1 = 1. \\ \\ \huge \boxed{ \pink{ \tt \therefore 1 = 1.}} \\ \\ \huge \orange{ \underline{ \mathbb{LHS = RHS }}}

Hence, it is proved .

THANKS .


Anonymous: Awesome broo
Anonymous: Answer like a Mod
Cutiepie93: awesome answer
Anonymous: thanks 2 both of you
Answered by fanbruhh
14
ANSWER

Step-by-step explanation:

\begin{lgathered}\bf \because { \sqrt{x} }^ { - 1} \times \sqrt{y} \times { \sqrt{y} }^{ - 1} \times \sqrt{z} \times { \sqrt{z} }^{ - 1} \times \sqrt{x} = 1. \\ \\ \bf \implies \frac{1}{ \sqrt{x} } \times \sqrt{y} \times \frac{1}{ \sqrt{y} } \times \sqrt{z} \times \frac{1}{ \sqrt{z} } \times \sqrt{x} = 1. \\ \\ \bf \implies \frac{1}{ \cancel{\sqrt{x} }} \times \cancel{\sqrt{x}} \times \cancel{\sqrt{y} } \times \frac{1}{ \cancel{\sqrt{y} }} \times \cancel{\sqrt{z} } \times \frac{1}{ \cancel{\sqrt{z} }} = 1. \\ \\ \bf \implies 1 \times 1 \times 1 = 1.

THANKS
Similar questions