Math, asked by vamshi455krishna, 2 months ago

|x - 11 + 1x – 2| + |– 31+...+|x – 2019| + |– 2020.
Determine the greatest interval of real numbers [a, b] on which
the given expression has a constant value k for all x € [a, b].
What is the value of k?​

Answers

Answered by pulakmath007
9

SOLUTION

GIVEN

The given expression is

 \sf{ |x - 1| +  |x - 2|  +  |x - 3| + .. +  |x - 2019| +  |x - 2020|    }

TO DETERMINE

The greatest interval of real numbers [a,b] on which the given expression has a constant value k for all x ∈ [a,b]

The value of k

EVALUATION

The given expression is

 \sf{ |x - 1| +  |x - 2|  +  |x - 3| + .. +  |x - 2019| +  |x - 2020|    }

There are even number ( 2020 ) of modulus in the expression

First we consider the expression

 \sf{ |x - 1|  +  |x - 2|  }

Then

\sf  { |x - 1| +  |x  -  2| }  = \begin{cases} & \sf{ \:  \:  \:  \:  - (x  - 1) - (x - 2) =  - 2x + 3 \:   \:  \: \: when \: x  <1 } \\  \\ & \sf{  (x   - 1) - (x - 2) = 1 \:  \:  \:  \:  \: when \:1 \leqslant  x \leqslant   2}  \\  \\ & \sf{ \:  \:  \:  \:  (x  - 1)  + (x - 2) =  2x  -  3 \:   \:  \: \: when \: x  <2 } \end{cases}\\ \\

So above expression has constant value when 1 ≤ x ≤ 2

Now we consider the given expression

 \sf{ |x - 1| +  |x - 2|  +  |x - 3| + .. +  |x - 2019| +  |x - 2020|    }

By same argument as explained above we can say that the given expression has constant value when 1010 ≤ x ≤ 1011

For 1010 ≤ x ≤ 1011 the given expression becomes

 \sf{ |x - 1| +  |x - 2|  +  |x - 3| + .. +  |x - 2019| +  |x - 2020|    }

 \sf{ =  |x - 1| +  |x - 2|  +  |x - 3| + .. +  |x - 1009| +  |x - 1010|   +  | x - 1011 |   + ..+  |x - 2019| +  |x - 2020|    }

 \sf{ =  (x - 1) +  (x - 2)+  (x - 3)+ .. +  (x - 1009) + (x - 1010)   - ( x - 1011)   + .. - (x - 2019)  -   (x - 2020)   }

 \sf{ =   (- 1) +  ( - 2)+  ( -  3)+ .. +  ( - 1009) + ( - 1010)    +  1011   + ..  +  2019  +  2020  }

 \sf{ =   - (1 +  2+   3+ .. +   1009 +  1010)    +  1011   + ..  + ( 2019  +  2020 ) }

 \sf{ =   (1 +  2+   3+ .. +   1009 +  1010   +  1011   + ..  + 2019  +  2020 )  - 2 \times  (1 +  2+   3+ .. +   1009 +  1010) }

 \displaystyle \sf{ =  \frac{2020}{2}  (1 + 2020)  - 2 \times  \frac{1010}{2}(1 + 1010)  }

 \displaystyle \sf{ = 1010 \times 2021  -1010 \times 1011 }

 \displaystyle \sf{ = 1010 \times( 2021  - 1011) }

 \displaystyle \sf{ = 1010  \times 1010 }

 \displaystyle \sf{ = 1020100 }

FINAL ANSWER

The required interval = [ 1010 , 1011 ]

The required value of k = 1020100

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. Kyle owns an orchard nearby. He wants to charge one flat rate per pound for his apples no matter how much someone buys. ...

https://brainly.in/question/40419271

2. isabella belongs to a fitness club. she paid an inital fee of 50 when she joined and also pays 10 per month.

https://brainly.in/question/40648040


amansharma264: Perfect
Similar questions