Math, asked by prabhavatidahake, 5 months ago

√x+13 +√x-1 / √x+13 - √x-1 = 3​

Answers

Answered by PharohX
7

Step-by-step explanation:

GIVEN EQUATION : -

 \sf \frac{ \sqrt{x + 13}  +  \sqrt{x - 1} }{ \sqrt{x + 13} -  \sqrt{x - 1}  }  = 3 \\

SOLUTION :-

 \sf \frac{ \sqrt{x + 13}  +  \sqrt{x - 1} }{ \sqrt{x + 13} -  \sqrt{x - 1}  }  =  \frac{3}{1}  \\

Use Componendo and Dividendo

 \sf \frac{ \sqrt{x + 13}  +  \sqrt{x - 1} }{ \sqrt{x + 13} -  \sqrt{x - 1}  }  =  \frac{3}{1}  \\  \\  \implies \sf \frac{ (\sqrt{x + 13}  +  \sqrt{x - 1} ) + (\sqrt{x + 13} -  \sqrt{x - 1} )}{ (\sqrt{x + 13}  +  \sqrt{x - 1}  ) - (\sqrt{x + 13} -  \sqrt{x - 1} )}  =  \frac{3 + 1}{3 - 1}  \\  \\  \implies\sf \frac{ \sqrt{x + 13}  +  \sqrt{x - 1} + \sqrt{x + 13} -  \sqrt{x - 1} }{ \sqrt{x + 13}  +    \sqrt {x - 1}    - \sqrt{x + 13}  +  \sqrt{x - 1} }  =  \frac{4}{2}  \\  \\  \implies  \sf\frac{2 \sqrt{x + 13} }{2 \sqrt{x - 1} }  = 2 \\  \\  \sf \implies \frac{ \sqrt{x + 13} }{ \sqrt{x - 1} }  = 2 \\   \rm \: squaring \:  \: both \:  \: sides \\  \implies \sf \bigg( \sqrt{ \frac{x + 13}{x - 1} }  \bigg) {}^{2}  =  {2}^{2}  \\  \\  \implies  \sf\frac{x + 13}{x - 1}  = 4 \\  \\  \implies \sf \: x + 1 3= 4(x - 1) \\  \\  \implies \:  \sf \: x + 13 = 4x - 4 \\  \\  \implies \:  \sf \: x - 4x =  - 4 - 13 \\  \\  \implies \:  \sf - 3x =  - 17 \\  \\  \implies \:  \sf \: x \:  =  \frac{17}{3}

Similar questions