Math, asked by prahaladsam, 2 months ago

x=17+12root2 then rootx-1/root x is

Answers

Answered by BrainMaster999
0

Answer:

4 \sqrt{2}

Step-by-step explanation:

Given question:

x = 17 + 12 \sqrt{2}  \\ find  \sqrt{x}  -  \frac{1}{ \sqrt{x} }

Solution:

let \: y =  \sqrt{x}  -  \frac{1}{ \sqrt{x} }  \\  =  >  {y}^{2}   = ( \sqrt{x}  -  \frac{1}{ \sqrt{x} } )^{2}  \\  =  >  {y}^{2}  = ( \sqrt{x})^{2}   +  {( \frac{1}{ \sqrt{x} } })^{2}  - (2 \times  \sqrt{x}  \times  \frac{1}{ \sqrt{x} } ) \\  =  >  {y}^{2}  = x +  \frac{1}{x}  - 2 \\  =  >  {y }^{2}  =  \frac{ {x}^{2}  - 2x + 1}{x}  \\  =  > y {}^{2}  =  \frac{ {(x - 1)}^{2} }{x}  \\  =  > y =   \sqrt{\frac{ {(x - 1)}^{2} }{x} } \\  =  > y =  \frac{x - 1}{ \sqrt{x} }

We can write the value of X as:

x = 17 + 12 \sqrt{2}  \\  = 9 + 8 + 12 \sqrt{2}  \\  = 9 + 8 + 2 \times 3 \times 2 \sqrt{2}  \\  =  {3}^{2}  + (2 \sqrt{2} ) {}^{2}  + (2 \times 3 \times 2 \sqrt{2} ) \\  = (3 + 2 \sqrt{2} ) ^{2}  \\  \\ so \sqrt{x}  = 3 + 2 \sqrt{2}

So, by placing the value,

y =  \frac{x - 1}{ \sqrt{x} }  \\  =  > y =  \frac{17 + 12 \sqrt{2} - 1 }{3 + 2 \sqrt{2} }  \\  =  > y =  \frac{16 + 12 \sqrt{2} }{3 + 2 \sqrt{2} }  \\ rationalizing \: the \: denomintor \\  =  > y =  \frac{(16 + 12 \sqrt{2})(3 - 2 \sqrt{2} ) }{3 {}^{2} - (2  \sqrt{2}) {}^{2}    }  \\  =  > y = \frac{48 - 32 \sqrt{2 }  + 36 \sqrt{2}  - 48}{9 - 8}  \\  =  > y = 4 \sqrt{2}  \:  \: (ans.)

Hope this helps. ^_^

Similar questions