Math, asked by aadhar68, 7 months ago

x/2 + 1 = 12/x
it is a quadratic equation please solve this and tell the answer​

Answers

Answered by anindyaadhikari13
2

 \sf \frac{x}{2}  + 1 =  \frac{12}{x}

 \sf \implies x( \frac{x}{2}  + 1) = 12

 \sf \implies\frac{ {x}^{2} }{2}  + x = 12

 \sf \implies\frac{ {x}^{2} + 2x }{2} = 12

 \sf \implies{x}^{2} + 2x = 24

 \sf \implies{x}^{2} + 2x -  24 = 0

 \sf \implies{x}^{2}  - 4x + 6x-  24 = 0

 \sf \implies x(x  - 4) + 6(x-4) = 0

 \sf \implies (x +  6)(x-4) = 0

By zero product rule,

 \sf x =  - 6 \: or \: x = 4

Hence, the required answer is,

x=-6,4.

Answered by aryan073
2

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Q1) x/2+1=12/x

\large\underline{\sf{Answer}}

  \:  \boxed{ \rm{ \frac{x}{2}  + 1 =  \frac{12}{x}....... given \: equation  }}

 \:  \:  \implies \displaystyle \tt{ \frac{x}{2}  + 1 =  \frac{12}{x}}

 \:  \implies \displaystyle \tt{x + 2 =  \frac{24}{x} }

 \:  \implies \displaystyle \tt{ {x}^{2}  + 2x = 24}

 \:  \implies \displaystyle \tt{ {x}^{2}  + 2x - 24} = 0

 \:  \implies \displaystyle \tt{ {x}^{2}  + 6x - 4x - 24 = 0}

 \:  \implies \displaystyle \tt{x(x + 6) - 4(x + 6) = 0}

 \:  \implies \displaystyle \tt{(x + 6)(x - 4) = 0}

 \:  \\  \divideontimes  \underline{\displaystyle \tt{x =  - 6 \: and \: x = 4 \: is \: the \: solution}}

 \:  \boxed{ \sf{this \: is \: a \: quadratic \: equation \: of \: degree \: 2}}

Similar questions