(x^2 + 1)^2 - x^2 = 0 has how many real roots?
Answers
Answered by
2
Step-by-step explanation:
Clearly the given equation is bi - quadratic .
So it will have at most 4 zeros......
#Answer with quality
#BAL
Answered by
1
Step-by-step explanation:
(x^2+1)^2-x^2=0
(x^2+1)^2=x^2
rooting on both sides
we get
x^2+1=x x^2+1=-x
x^2-x+1=0 x^2+x+1=0
det of equations is less than zero
hence they have imaginary
Note :-----
The classification of the roots of the equation, based on the discriminant 'D' is as follows:
(i) The roots are real and equal id D = 0.
(ii) The roots are real and unequal if D > 0.
(iii) The roots are unreal if D < 0.
Similar questions