Math, asked by emmadicharan12, 2 months ago

x ²-1 <0 solve this quadratic in equalities​

Answers

Answered by LivetoLearn143
1

\large\underline{\sf{Solution-}}

Given quadratic inequality is

\rm :\longmapsto\: {x}^{2} - 1 &lt; 0

We know that

\boxed{ \sf{ \:  {x}^{2} -  {y}^{2}  = (x + y)(x - y)}}

So, above expression can be reduced to

\rm :\longmapsto\:(x + 1)(x - 1) &lt; 0

We know that,

If a and b are positive real numbers such that a < b then

\boxed{ \sf{ \: (x - a)(x - b) &lt; 0 \:  \implies \: a &lt; x &lt; b}}

So, using this

\rm :\longmapsto\: - 1 &lt; x &lt; 1

\bf\implies \:x \:  \in \: ( - 1, \: 1)

Extra question :-

1. Solve the quadratic inequality :-

\rm :\longmapsto\: {x}^{2} - 3x + 2 &lt; 0

\rm :\longmapsto\: {x}^{2} - x  - 2x+ 2 &lt; 0

\rm :\longmapsto\:x(x - 1) - 2(x - 1) &lt; 0

\rm :\longmapsto\:(x - 1)(x - 2) &lt; 0

\rm :\longmapsto\:1 &lt; x &lt; 2

\bf\implies \:x \:  \in \: ( 1, \: 2)

Similar questions